\(\left(a+bi\right)^{2002}=a-bi\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2016

Đặt \(z=a+bi\Rightarrow\overline{z}=a-bi,\left|z\right|=\sqrt{a^2+b^2}\) Hệ thức đã cho trở thàng \(z^{2002}=\overline{z}\)

\(\left|z\right|^{2002}=\left|z^{2002}\right|=\left|\overline{z}\right|=\left|z\right|\Rightarrow\left(\left|z\right|^{2001}-1\right)=0\)

Do đó :

\(\left|z\right|=0\) tức là (a,b) =(0,0) hoặc \(\left|z\right|=1\). Trong trường hợp \(\left|z\right|=1\), ta có :

\(z^{2002}=\overline{z}\Rightarrow z^{2002}=z.\overline{z}=\left|z\right|^2=1\)

Phương trình : \(z^{2002}=1\) có 2003 nghiệm phân biệt \(\Rightarrow\) có 2004 cặp thứ tự theo yêu cầu.

NV
3 tháng 6 2019

\(z+1+2i=\left(1+i\right)\left|z\right|=\left|z\right|+i.\left|z\right|\)

\(\Leftrightarrow z=\left|z\right|-1+\left(\left|z\right|-2\right)i\)

Lấy mođun 2 vế:

\(\Rightarrow\left|z\right|=\sqrt{\left(\left|z\right|-1\right)^2+\left(\left|z\right|-2\right)^2}\)

\(\Leftrightarrow\left|z\right|^2=\left|z\right|^2-2\left|z\right|+1+\left|z\right|^2-4\left|z\right|+4\)

\(\Leftrightarrow\left|z\right|^2-6\left|z\right|+5=0\Rightarrow\left[{}\begin{matrix}\left|z\right|=1\left(l\right)\\\left|z\right|=5\end{matrix}\right.\)

\(\Rightarrow a^2+b^2=5\)

Không đủ dữ kiện để tính \(P=a+b\)

14 tháng 1 2018

\(VT=\left(a+bi\right)^2+\left(a-bi\right)^2\\ =a^2+2abi-b^2+a^2-2abi-b^2\\ =2a^2-2b^2\\ =2\left(a^2-b^2\right)=VP\)

\(VT=\left(a+bi\right)^2-\left(a-bi\right)^2\\ =a^2+2abi-b^2-\left(a^2-2abi-b^2\right)\\ =a^2+2abi-b^2-a^2+2abi+b^2\\ =4abi=VP\)

\(VT=\left(a+bi\right)^2\left(a-bi\right)^2\\ =\left[\left(a+bi\right)\left(a-bi\right)\right]^2\\ =\left[a^2-\left(bi\right)^2\right]^2\\ =\left(a^2+b^2\right)^2=VP\)

1 tháng 4 2017

a)3x+yi=(2y+1)(2−x)i⇔{3x=2y+1y=2−x⇔{x=1y=13x+yi=(2y+1)(2−x)i⇔{3x=2y+1y=2−x⇔{x=1y=1

b)2x+y−1=(x+2y−5)i⇔{2x+y−1=0x+2y−5=0⇔{x=−1y=3


6 tháng 9 2020

Câu 2. Đặt A=x2+y2+1

Nhập \(2^A=\left(A-2x+1\right)4^x\) vào máy tính Casio. Cho x=0.01, tìm A

Máy sẽ giải ra, A=1.02=1+2x

\(\Leftrightarrow x^2+y^2+1=1+2x\)

\(\Leftrightarrow x^2+y^2-2x=1\)

\(\Leftrightarrow\left(x-1\right)^2+y^2=1\) (C)

Có (C) là đường tròn tâm (1,0) bán kính R=1

Lại có: P=\(\frac{8x+4}{2x-y+1}\)

\(\Leftrightarrow x\left(2P-8\right)-yP+P-4=0\) (Q)

Có (Q) là phương trình đường thẳng.

Để x,y có nghiệm thì đường thẳng và đường tròn giao nhau nghĩa là d(I,(Q))\(\le R\)

\(\Leftrightarrow\frac{\left|x\left(2P-8\right)-yP+P-4\right|}{\sqrt{\left(2P-8\right)^2+P^2}}\le1\)

\(\Leftrightarrow\frac{\left|2P-8+P-4\right|}{\sqrt{\left(2P-8\right)^2+1}}\le1\)

\(\Leftrightarrow\left(3P-12\right)^2\le5P^2-32P+64\)

\(\Leftrightarrow4P^2-40P+80\le0\)

\(\Leftrightarrow5-\sqrt{5}\le P\le5+\sqrt{5}\)

Vậy GTNN của P gần số 3 nhất. Chọn C

NV
2 tháng 4 2019

\(\left|z\right|=1\Rightarrow z=cosx+i.sinx\)

\(z^3-z+2=cos3x+i.sin3x-cosx-i.sinx+2\)

\(=\left(cos3x-cosx+2\right)-i.\left(sin3x-sinx\right)\)

\(=\left(2-2sin2x.sinx\right)-i.2cos2x.sinx\)

\(=2\left[\left(1-sin2x.sinx\right)-i.cos2x.sinx\right]\)

\(\Rightarrow A=\left|z^3-z+2\right|=2\sqrt{\left(1-sin2x.sinx\right)^2+cos^22x.sin^2x}\)

\(A=2\sqrt{1-2sin2x.sinx+sin^22x.sin^2x+cos^22x.sin^2x}\)

\(A=2\sqrt{1-4sin^2x.cosx+sin^2x}\)

\(A=2\sqrt{1-4\left(1-cos^2x\right)cosx+1-cos^2x}\)

\(A=2\sqrt{4cos^3x-cos^2x-4cosx+2}\)

\(A_{max}\) khi \(4cos^3x-cos^2x-4cosx+2\) đạt max

Xét hàm \(f\left(t\right)=4t^3-t^2-4t+2\) trên \(\left[-1;1\right]\)

\(f'\left(t\right)=12t^2-2t-4=0\Rightarrow\left[{}\begin{matrix}t=-\frac{1}{2}\\t=\frac{2}{3}\end{matrix}\right.\)

\(\Rightarrow f\left(t\right)\) đạt max tại \(t=-\frac{1}{2}\) hay \(A_{max}\) khi \(a=cosx=-\frac{1}{2}\)

\(\Rightarrow b^2=sin^2x=1-cos^2x=\frac{3}{4}\)

\(\Rightarrow P=2a+4b^2=-1+3=2\)

6 tháng 5 2016

Ta có : \(\left(a^{\log_37}\right)^{\log_37}+\left(b^{\log_711}\right)^{\log_711}+\left(c^{\log_{11}25}\right)^{\log_{11}25}=27^{^{\log_37}}+49^{^{\log_711}}+\left(\sqrt{11}\right)^{^{\log_{11}25}}\)

                                                                                         \(=7^3+11^2+25^{\frac{1}{2}}=469\)

18 tháng 4 2016

Phương trình có hoành độ giao điểm \(\frac{-x+m}{x+2}=-x+\frac{1}{2}\Leftrightarrow\begin{cases}x\ne-2\\2x^2+x+2m-2=0\left(1\right)\end{cases}\)

Đường thẳng (d) cắt \(\left(C_m\right)\) tại 2 điểm A, B <=> (1) có 2 nghiệm phân biệt \(x\ne-2\)

\(\Leftrightarrow\begin{cases}\Delta=1-8\left(2m-2\right)>0\\2\left(-2\right)^2+\left(-2\right)+2m-2\ne0\end{cases}\)\(\Leftrightarrow\begin{cases}17-16m>0\\m\ne-2\end{cases}\)\(\Leftrightarrow\begin{cases}m<\frac{17}{16}\\m\ne-2\end{cases}\)

\(A\left(x_1;-x_1+\frac{1}{2}\right);B\left(x_2;-x_2+\frac{1}{2}\right);\) trong đó x1, x2 là 2 nghiệm phân biệt của phương trình (1)

Theo Viet ta có \(\begin{cases}x_1+x_2=-\frac{1}{2}\\x_1x_2=m-1\end{cases}\)

\(AB=\sqrt{\left(x_2-x_1\right)^2+\left(x_1-x_2\right)^2}=\sqrt{2\left[\left(x_1+x_2\right)^2-4x_1x_2\right]}=\frac{\sqrt{2\left(17-16m\right)}}{2}\)

\(d\left(O,d\right)=\frac{1}{2\sqrt{2}};S_{\Delta OAB}=\frac{1}{2}AB.d\left(O,d\right)=\frac{1}{2}.\frac{1}{2\sqrt{2}}.\frac{\sqrt{2\left(17-16m\right)}}{2}=1\)

\(\Leftrightarrow m=\frac{-47}{16}\)

Vậy \(m=\frac{-47}{16}\)

14 tháng 7 2016

Khoảng cách từ O đến d tính ntn v bn? @Hoàng Thị Tâm