Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ: \(p^2-q^2=p-3q+1\)\(\Rightarrow p^2-p=q^2-3q+1\Rightarrow p\left(p-1\right)=q\left(q-1\right)-2q+1\)(1)
Ta thấy p(p-1) và q(q-1) luôn chẵn; Nên Vế trái của (1) chẵn; Vế phải của 1 luôn lẻ với mọi p; q
Nên không có p; q nguyên nào thỏa mãn điều kiện đề bài.
p(p-1)=(q-1)(q-2) (*)
=> p | q-1 hoặc p | q-2
do p nguyên tố, (q-1;q-2)=1
1.Nếu p|q-1 thì p <= q-1
Từ (*) suy ra p-1>=q-2
=> p>=q-1
Do đó p=q-1
Mà p,q nguyên tố nên p=2,q=3
Khi đó p^2+q^2=13 là số nguyên tố
2.Xét p|q-2
Từ (*) => q-2 > 0
Lập luận tương tự TH1 dẫn tới mâu thuẫn
a, x2+5y2+2y-4xy-3=0
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Nếu \(y< -3\Rightarrow y+1< -2\Rightarrow\left(y+1\right)^2>4\Rightarrow VT>VP\)(vô lí)
\(\Rightarrow y\ge-3\Rightarrow y_{min}=-3\)
lúc đó \(\left(x+6\right)^2+4=4\Rightarrow x=-6\)
Vậy.................
a) \(x^2+5y^2+2y-4xy-3=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)
Ta thấy : \(4=0+4\) là tổng hai số chính phương
Thử các giá trị \(\orbr{\begin{cases}\left(y+1\right)^2=0\\\left(y+1\right)^2=4\end{cases}}\)
Ta thấy : \(y=-3\) đạt giá trị nhỏ nhất.
Khi đó : \(x^2+5.\left(-3\right)^2+2\left(-3\right)-4x\left(-3\right)-3=0\)
\(\Leftrightarrow x=-6\)
Vậy : \(\left(x,y\right)=\left(-6,-3\right)\) với y nhỏ nhất thỏa mãn đề.
P/s : Không chắc lắm ....