Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Giả sử: \(9x+5=n\left(n+1\right)\left(n\in Z\right)\)
\(36x+20-4n^2+4n\)
\(\Rightarrow36x+21=4n^2+4n+1\)
\(\Rightarrow3\left(12x+7\right)=\left(2n+1\right)^2\)
\(\left(2n+1\right)^2\)là số chính phương nên sẽ chia hết cho 3 => (2n+1)2 chia hết cho 9
Lại có: 12x+7 ko chia hết cho 3 => 3(12x+7) ko chia hết cho 9
Chứng tỏ không tồn tại số nguyên x nào để 9x+5=n(n+1)
a)xy-7x-2y=15
=>x(y-7)-2y=15
=>x(y-7)-2y+14=15+14
=>x(y-7)-2(y-7)=29
=>(x-2)(y-7)=29
=>x-2 và y-7 thuộc Ư(29)={1;-1;29;-29}
Với x-2=1 =>x=3 <=> y-7=29 =>y=36
Với x-2=-1 =>x=1 <=>y-7=-29 =>y=-22
Với x-2=29 =>x=31 <=>y-7=1 =>y=8
Với x-2=-29 =>x=-27 <=>y-7=-1 =>y=6
Vậy .....
b)x2+5x-2xy-10y-11=0
<=>x2+5x-2xy-10y=11
<=>(x2-2xy)+(5x-10y)=11
<=>x(x-2y)+5(x-2y)=11
<=>(x+5)(x-2y)=11
=>x+5 và x-2y thuộc Ư(11)={1;-1;11;-11}
Xét x+5=1 =>x=-4 <=>x-2y=11 <=>-4-2y=11 =>y=\(-7\frac{1}{2}\left(loai\right)\)
Xét x+5=11 =>x=6 <=>x-2y=1 <=>6-2y=1 =>y=\(2\frac{1}{2}\left(loai\right)\)
Xét x+5=-1 =>x=-6 <=>-6-2y=-11 =>y=\(2\frac{1}{2}\left(loai\right)\)
Xét x+5=-11 =>x=-16 <=>-16-2y=-11 =>y=\(-2\frac{1}{2}\left(loai\right)\)
Vậy ko có giá trị x,y nguyên nào thỏa mãn
bài này thiếu dữ kiện hay sao ấy
thiếu đề bạn ơi