K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có\(\left(x+y-3\right)^2+6=\frac{12}{\left|y-1\right|+\left|y-3\right|}\left(1\right)\)

:\(\frac{12}{\left|y-1\right|+\left|y-3\right|}=\frac{12}{\left|y-1\right|+\left|3-y\right|}\le\frac{12}{\left|y-1+3-y\right|}=\frac{12}{2}=6\left(2\right)\)

\(\left(x+y-3\right)^2+6\ge6\left(3\right)\)

Từ (1),(2) và (3)

Suy ra dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y-3=0\\\left(y-1\right)\left(3-y\right)\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}1\le y\le3\\x+y=3\end{cases}}\)

Với y=1 thì x=2

Với y=2 thì x=1

Với y=3 thì x=0

Vậy....................

\(1)\)

\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận ) 

TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại ) 

Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)

\(2)\)

\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)

\(\Rightarrow\)\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại ) 

TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận ) 

\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)

Vậy \(1\le x\le5\) và \(y=-1\)

29 tháng 5 2018

Ta có: \(\hept{\begin{cases}\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\\3-\left(y+2\right)^2\le3\end{cases}}\)

\("="\Leftrightarrow\hept{\begin{cases}-2\le x\le1\\y=-2\end{cases}}\)

27 tháng 1 2019

Ta có : \(\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(\Rightarrow\left|x-5\right|+\left|1-x\right|\ge4\left(1\right)\)

Ta lại có : \(\left|y+1\right|\ge0\Rightarrow\left|y+1\right|+3\ge3\)

\(\Rightarrow\frac{1}{\left|y+1\right|+3}\le\frac{1}{3}\)hay \(\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\left(2\right)\)

Theo đề ra ta có : \(\left|x-5\right|+\left|1-x\right|=\frac{12}{\left|y+1\right|+3}\left(3\right)\)

Từ (1) và (3), suy ra : Dấu "=" xảy ra khi và chỉ khi : 

\(\left(x-5\right)\left(1-x\right)=0\Leftrightarrow1\le x\le5\)

Từ (2) và (3), suy ra : Dấu "=" xảy ra khi và chỉ khi :

\(\frac{12}{\left|y+1\right|+3}=4\Leftrightarrow\left|y+1\right|+3=3\)

\(\Leftrightarrow\left|y+1\right|=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)

Vậy : \(x\in\left\{1;2;3;4;5\right\};y=\left(-1\right)\)

ta có (x+1)(x+3)=(x+8)(x-9)=y

<=> \(\frac{x+1}{x-9}\)\(\frac{x+8}{x+3}\)

<=> \(\frac{x-9+10}{x-9}\) = \(\frac{x+3+5}{x+3}\)

<=>\(\frac{10}{x-9}\)  =  \(\frac{10}{2x+6}\)

<=> x-9=2x+6

<=> 3x=15

<=> x=5

lúc đó 6.8.13.(-4)=ymà y2\(\ge\)0

VẬy không có giá trị nào thỏa mãn x,y