K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2017

Giải:

∆AHB và ∆KBH có

AH=KH(gt)

\(\widehat{AHB}\)=\(\widehat{KHM}\)

BH cạnh chung .

nên ∆AHB=∆KBH(c.g.c)

suy ra: \(\widehat{ABH}\)=\(\widehat{KBH}\)

Vậy BH là tia phân giác của góc B.

Tương tự ∆AHC =∆KHC(c.g.c)

Suy ra: \(\widehat{ACH}\)=\(\widehat{KCH}\)

Vậy CH là tia phân giác của góc C.

17 tháng 11 2017

tam giác KBH nên chuyển thành tam giác KHB

13 tháng 5 2017

Các tam giác cân: ABC,ABD,ACE,DAE

13 tháng 5 2017

Tam giác ABC có AB = AC (theo đề bài)

Suy ra: tam giác ABC cân tại A( dựa theo định nghĩa tam giác cân)

=> góc ABC = góc ACB ( dựa theo tính chất tam giác cân)

=> góc ABC = góc ACB = \(\left(180^0-36^0\right):2=72^0\)

Có góc ACB + góc ACE = \(180^0\) (2 góc kề bù)

=> góc ACE = \(180^0\)- góc ACB

=> góc ACE = \(180^0-72^0=108^0\)

Tam giác ACE có góc CAE + góc CEA + góc ACE = \(180^0\)(tổng 3 góc của 1 tam giác)

=> góc CEA = \(180^0-\left(108^0+36^0\right)=36^0\)(*)

Tam giác ADE có góc BDA = góc CEA = \(36^0\)

=> tam giác ADE cân tại A ( dựa theo tính chất của tam giác cân)

19 tháng 5 2017

Các tam giác bằng nhau:
\(\Delta ABC=\Delta EDC\left(c-g-c\right)\)

\(\Delta ACD=\Delta ECB\left(c-g-c\right)\)

\(\Delta ABD=\Delta EDB\left(c-c-c\right)\)

\(\Delta ABE=\Delta EDA\left(c-c-c\right)\).

Ta có: ∆AMD=∆AME(Cạnh huyền AM chung, góc nhọn^A1 = ^A2)

∆MDB=∆MEC(Cạnh huyền BM=CM, cạnh góc vuông.

MD=ME, do ∆AMD=∆AME)

∆AMB= ∆AMC(Cạnh AM chung),

Cạnh MB=MC, cạnh AB=AC

Vì AD=AE, DB=EC



20 tháng 4 2017

Ta có: \(\Delta\)AMD=\(\Delta\)AME(Cạnh huyền AM chung, góc nhọn \(\widehat{A}_1=\widehat{A}_2\))

\(\Delta\)MDB=\(\Delta\)MEC(Cạnh huyền BM=CM, cạnh góc vuông )

MD=ME, do \(\Delta\)AMD=\(\Delta\)AME)

\(\Delta\)AMB= \(\Delta\)AMC(Cạnh AM chung),

Cạnh MB=MC, cạnh AB=AC

Vì AD=AE, DB=EC



7 tháng 7 2017

\(\Delta ABC=\Delta EHD\)

6 tháng 11 2017

Hai tam giác trên bằng nhau.

Ký hiệu: ∆ABC = ∆ EHD

20 tháng 4 2017

Vẽ đoạn thẳng AD.

∆ADB và ∆DAC có:

ˆA1A1^= ˆD1D1^(so le trong AB//CD)

AD là cạnh chung.

A2^=D2^(So le trong, AC//BD)

Do đó ∆ADB=∆DAC(g.c .g)

Suy ra: AB=CD, BD=AC



Xem thêm tại: http://loigiaihay.com/bai-38-trang-124-sach-giao-khoa-toan-7-tap-1-c42a5073.html#ixzz4elm8F0eT

6 tháng 8 2017

A B C D

Vẽ đoạn thẳng AD.

∆ADB và ∆DAC có:

\(\widehat{A^1}\)= \(\widehat{D^1}\)(so le trong AB//CD)

AD là cạnh chung.

\(\widehat{A^2}\)=\(\widehat{D^2}\)(So le trong, AC//BD)

Do đó ∆ADB=∆DAC(g.c .g)

Suy ra: AB=CD, BD=AC