Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)
\(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)
THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)
\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)
Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)
\(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)
KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)
b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)
\(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)
Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :
\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)
\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)
\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)
Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)
\(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)
Đặt \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}=kak\left(kak\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=4kak\\y=3kak\\z=5kak\end{cases}}\)
Mà \(x^2+y^2+z^2=200\)
\(\Leftrightarrow\left(4kak\right)^2+\left(3kak\right)^2+\left(5kak\right)^2=200\)
\(\Leftrightarrow16.kak^2+9.kak^2+25.kak^2=200\)
\(\Leftrightarrow kak^2.\left(16+9+25\right)=200\)
\(\Leftrightarrow kak^2.50=200\)
\(\Leftrightarrow kak^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}kak=2\\kak=-2\end{cases}}\)
+) Với \(kak=2\)thì \(\hept{\begin{cases}x=4kak=8\\y=3kak=6\\z=5kak=10\end{cases}}\)
+) Với \(kak=-2\)thì \(\hept{\begin{cases}x=4kak=-8\\y=3kak=-6\\z=5kak=-10\end{cases}}\)
Vậy ...
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\left(k\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)
Ta có : \(xyz=-30\)
\(\Leftrightarrow2k\times3k\times5k=-30\)
\(\Leftrightarrow30k^3=-30\)
\(\Leftrightarrow k^3=-1\)
\(\Leftrightarrow k=-1\)
Thay vào ta được :
\(\hept{\begin{cases}x=2k=-2\\y=3k=-3\\z=5k=-5\end{cases}}\)
Vậy ...
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2+y^2}{208}=1\)
Vậy x = 8 ; y = 12 ; z = 15
a) theo t/c dãy tỉ số = nhau ta có:
\(\frac{x}{3}=\frac{y}{-4}=\frac{z}{7}=\frac{2x+3y-5z}{6-12-35}\)=\(\frac{82}{-41}=-2\)
=> x = -6; y= 8; z= -14
b) từ 5x=6y và 3y=4z => \(\frac{x}{6}=\frac{y}{5};\frac{y}{4}=\frac{z}{3}\) => \(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}\)
ta có \(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}=\frac{x^2-y^2+z^2}{24^2-20^2+15^2}\)=\(\frac{401}{401}=1\)
=> \(x=24;y=20;z=15\)
a/ \(\frac{x}{3}=\frac{y}{-4}=\frac{z}{7}\Rightarrow\frac{2x}{6}=\frac{3y}{-12}=\frac{5z}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\frac{2x}{6}=\frac{3y}{-12}=\frac{5z}{35}=\frac{2x+3y-5z}{6+\left(-12\right)-35}=\frac{82}{-41}=-2\)
Khi đó:\(\frac{2x}{6}=-2\Rightarrow x=-6;\frac{3y}{-12}=-2\Rightarrow y=8;\frac{5z}{35}=-2\Rightarrow z=-12\)
b/\(5x=6y\Rightarrow\frac{x}{6}=\frac{y}{5}\Rightarrow\frac{x}{24}=\frac{y}{20};3y=4z\Rightarrow\frac{y}{4}=\frac{z}{3}\Rightarrow\frac{y}{20}=\frac{z}{15}\Rightarrow\frac{x}{24}=\frac{y}{20}=\frac{z}{15}\)
Đặt\(\frac{x}{24}=\frac{y}{20}=\frac{z}{15}=k\Rightarrow\frac{x^2}{576}=\frac{y^2}{400}=\frac{z^2}{225}=k^2\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{576}=\frac{y^2}{400}=\frac{z^2}{225}=\frac{x^2-y^2+z^2}{576-400+225}=\frac{401}{401}=1=k^2\Rightarrow k\in\left\{1;-1\right\}\)
Khi \(k=-1\)thì: \(\frac{x}{24}=-1\Rightarrow x=-24;\frac{y}{20}=-1\Rightarrow y=-20;\frac{z}{15}=-1\Rightarrow z=-15\)
Khi \(k=1\)thì: \(\frac{x}{24}=1\Rightarrow x=24;\frac{y}{20}=1\Rightarrow y=20;\frac{z}{15}=1\Rightarrow z=15\)
c)\(\frac{3x}{2}=\frac{2y}{3}=\frac{4z}{5}\Rightarrow\frac{3x}{24}=\frac{2y}{36}=\frac{4z}{60}\Rightarrow\frac{x}{8}=\frac{y}{18}=\frac{z}{15}\)
Áp dụng tính chất của tỉ lệ thức ta có: \(\frac{x}{8}=\frac{y}{18}=\frac{z}{15}=\frac{x+y-z}{8+18-15}=\frac{44}{11}=4\)
khi đó:\(\frac{x}{8}=4\Rightarrow x=32;\frac{y}{18}=4\Rightarrow y=72;\frac{z}{15}=4\Rightarrow z=60\)
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{x}{4}\right)^3=\left(\frac{x}{6}\right)^3\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x^2=1;y^2=4;z^2=9\)
\(\Rightarrow x=1;y=2;z=3\) hoặc \(x=-1;y=-2;z=-3\)
m: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{\dfrac{5}{2}}=\dfrac{z}{\dfrac{7}{4}}=\dfrac{3x+5y+7z}{3\cdot2+5\cdot\dfrac{5}{2}+7\cdot\dfrac{7}{4}}=\dfrac{123}{\dfrac{123}{4}}=4\)
Do đó: x=8; y=10; z=7
n: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó: x=18; y=16; z=15
Ta có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và \(x^2-y^2=-16\)
Áp dụng tinh chất của dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x^2-y^2}{8^2-12^2}=\frac{-16}{-80}=\frac{1}{5}\)
\(\hept{\begin{cases}\frac{x^2}{8^2}=\frac{1}{5}\Rightarrow x=\sqrt{\frac{1}{5}.8^2}=\frac{8\sqrt{5}}{5};x=-\frac{8\sqrt{5}}{5}\\\frac{y^2}{12^2}=\frac{1}{5}\Rightarrow y=\sqrt{\frac{1}{5}.12^2}=\frac{12\sqrt{5}}{5};y=-\frac{12\sqrt{5}}{5}\\\frac{z}{15}=\sqrt{\frac{1}{5}}\Rightarrow z=\sqrt{\frac{1}{5}}.15=3\sqrt{5}\end{cases}}\)
Vậy .......
Mong bạn thông cảm cho . Dấu " / " là phân số nhé !
x/2 = y/3 ; y/4 = z/5 và x2 - y2 = -16
=> x/2 = y/3 <=> x/8 = y/12 (1)
y/4 = z/5 <=> y/12 = z/15 (2)
Từ (1) và (2) suy ra : x /8 = y/12 = z/15 và x2 - y2 = -16
=> x2/16 = y2/24 = z/15 <=> x2/16 = y2/24
Áp dụng t/c dãy tỉ số bằng nhau , ta có :
x2/16 = y2/24 = x2 - y2 / 16 - 24 = -16/-8 = 2
=> x/8 = 2 => x = 16
y/12 = 2 => y = 24
z/15 = 2 => z = 30
Vậy x = 16
y = 24
z = 30
Chúc bạn học tốt !
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x^2-y^2+2z^2}{2^2-3^2+2.4^2}=\frac{108}{27}=4\)
vậy:
x/2=4 =>x=4.2=8
y/3=4 =>y=4.3=12
z/4=4 =>z=4.4=16
Đặt k = \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
=> k2 = \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
=> k = -2;2
+ k = -2 thì \(\frac{x}{2}=-2\Rightarrow y=-4\)
\(\frac{y}{3}=-2\Rightarrow y=-6\)
\(\frac{z}{4}=-2\Rightarrow y=-8\)
+ k = 2 thì : \(\frac{x}{2}=2\Rightarrow y=4\)
\(\frac{y}{3}=2\Rightarrow y=6\)
\(\frac{z}{4}=2\Rightarrow y=8\)
Vậy ..............................
Ta có : \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow3x=2y\Leftrightarrow x=\frac{2y}{3}\) (1)
\(\frac{y}{3}=\frac{z}{4}\Leftrightarrow4y=3z\Leftrightarrow z=\frac{4y}{3}\)(2)
thay (1) và (2) vào biểu thức \(^{x^2+y^2+z^2=116}\)ta được:
\(\left(\frac{2y}{3}\right)^2+y^2+\left(\frac{4y}{3}\right)^2=116\)
\(\Leftrightarrow\frac{4y^2}{9}+y^2+\frac{16y^2}{9}=116\)
\(\Leftrightarrow4y^2+9y^2+16y^2=1044\)
\(\Leftrightarrow29y^2=1044\)
\(\Leftrightarrow y^2=36\Leftrightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\)
Với \(y=6\Rightarrow x=\frac{2.6}{3}=4;z=\frac{4.6}{3}=8\)
Với \(y=-6\Rightarrow x=\frac{2.-6}{2}=-4;z=\frac{4.\left(-6\right)}{3}=-8\)
=> x ; y z lần lượt là: {6 ; 4 ; 8) ; {-6 ; -4 ; -8}