Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 3=1.3=(-1).(-3)
TH1: x+1=1 => x=0 và xy-1=3 => 0y=4.( vô lí)=> loại
TH2: x+1=3 =>x=2 và xy-1=1 => xy=2 => 2y=2 => y=1
TH3: x+1= -1 => x=-2 và xy-1= -3 => xy= -2 => -2y=-2 => y=1
TH4: x+1= -3 => x=-4 và xy-1= -1 => xy=0 Suy ra -4y=0 Suy ra y=0.
Vậy (x,y) thuộc {(2;1); (-2;1) ; (-4;0)}
b) Vì lũy thừa cơ số 6 thì luôn luôn tận cùng là 6 vậy 6666= (...6). Tận cùng=6
a) Theo đề bài, ta có :
\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\) => \(\frac{5}{x}=\frac{1+2y}{6}\)
2y+1 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
2y | 0 | -2 | 2 | -4 | 4 | -6 | 14 | -16 |
y | 0 | -1 | 1 | -2 | 2 | -3 | 7 | -8 |
x | 30 | -30 | 10 | -10 | 6 | -6 | 2 | -2 |
b) \(\frac{2}{y}-\frac{x}{6}=\frac{1}{30}\) => \(\frac{2}{y}=\frac{5x-1}{30}\)
5x-1 | -1 | 4 | -6 |
5x | 0 | 5 | -5 |
x | 0 | 1 | -1 |
y | -60 | 15 | -10 |
Đáp án C
Phương pháp:
- Sử dụng tính đơn điệu của hàm số để giải phương trình, từ đó đánh giá giá trị lớn nhất của biểu thức.
Cách giải:
<=>
(2)
Đặt
=> f(t) đồng biến trên (0;+∞)
<=>
<=>
Khi đó,
vì
Vậy Pmax = 1 khi và chỉ khi
Đáp án C
Phương pháp giải:
- Sử dụng tính đơn điệu của hàm số để giải phương trình, từ đó đánh giá giá trị lớn nhất của biểu thức.
Lời giải:
log 3 x + y x 2 + y 2 + x y + 2 = x ( x - 3 ) + y ( y - 3 ) + x y (1)
(2)
Đặt
=> f(t) đồng biến trên (0;+∞)
Khi đó,
vì
Vậy Pmax = 1 khi và chỉ khi
Thay y = 4 x vào biểu thức P và biến đổi ta thu được
P = - 9 log 2 2 + 27 log 2 x - 27 .
Do y ≥ 1 nên x ≤ 4 . Suy ra 1 2 ≤ x ≤ 4 . Đặt t = log 2 x , khi đó - 1 ≤ t ≤ 2 .
Xét hàm số f(t0 = - 9 t 2 + 27t - 27; t ∈ - 1 ; 2
Ta có f ' (t) = -18t + 27; f ' (t) = 0 ⇔ t = 3 2
f (-1) = -63; f (2) = -9; f 3 2 = 27 4
Vậy
m a x P = - 27 4 ⇔ x = 2 2 ; y = 2
Đáp án A
\(\frac{x}{9}-\frac{3}{y}=\frac{1}{18}\)
<=> \(\frac{xy-27}{9y}\frac{1}{18}\)
<=> \(\frac{2\left(xy-27\right)}{18y}=\frac{y}{18y}\)
=> 2(xy-27) = y
<=> 2xy -27 = y
đến ĐÂY tự giải nha
thì thử đi
th1:3-x=1;xy+5=-1(-1 chỉ bằng 1nhân-1;-1 nhân1 )
có x rồi thì thế vào xy+5=1 để tìm y
th2 tương tự (tui chỉ gợi ý thui)