K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

Ta có : \(5x=8y=20z\Rightarrow\frac{5x}{40}=\frac{8y}{40}=\frac{20z}{40}\Rightarrow\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

  \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)

\(\Rightarrow\begin{cases}\frac{x}{8}=3\Rightarrow x=8.3=24\\\frac{x}{5}=3\Rightarrow x=5.3=15\\\frac{x}{2}=3\Rightarrow x=2.3=6\end{cases}\)

Vậy \(x=24;y=15;z=6\)

            

 

  

24 tháng 8 2016

\(5x=8y=20z\)

\(\Rightarrow\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)

Áp dụng tc của dãy ti số bằng nhau ta có

\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)

\(\Rightarrow\begin{cases}x=24\\y=15\\z=6\end{cases}\)

13 tháng 12 2021

\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)

\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

23 tháng 2 2016

ai đó làm giúp mình , mình tích cho

23 tháng 2 2016

nhân 2 vế cho 2

=>2x2+2y2+2z2=2xy+2yz+2zx

=>2x2+2y2+2z2-2xy-2yz-2zx=0

=>(2x2-2xy)+(2y2-2yz)+(2z2-2zx)=0

=>(x-y)2+(y-z)2+(z-x)2=0

mà (x-y)2 >= 0 với mọi x,y

(y-z)2 >= 0 với mọi y,z

(z-x)2 >=0 với mọi z,x

=>(x-y)2+(y-z)2+(z-x)2 >= 0

mà theo đề:(x-y)2+(y-z)2+(z-x)2=0

=>(x-y)2=(y-z)2=(z-x)2=0

=>x=y

   y=z

   z=x

hay x=y=z

do đó x2015+y2015+z2015=32016

<=>x2015+x2015+x2015=32016

<=>3x2015=32016<=>x2015=32016:3=32015<=>x=2015

Vậy x=y=z=2015

20 tháng 6 2015

1)5(x^2-1)+x(1-5x)= x-2

<=>5x2-5+x-5x2=x-2

<=>-5+x=x-2

<=>x-x=-2+5

<=>0x=3(vô lí)

vậy ko tìm được x

 

 

20 tháng 6 2015

daj quá bạn đăng từng baj thuj

8 tháng 9 2016

\(x.\left(8y-4\right)=160\)

\(\Leftrightarrow x.4.\left(2y-1\right)=160\)

\(\Leftrightarrow x.\left(2y-1\right)=40\)

Vì  \(x;y\in Z\)

\(\Rightarrow2y-1\) là số lẻ

\(2y-1\inƯ_{40}\)

\(\Rightarrow2y-1\in\left\{1;5;-1;-5\right\}\)

(+) Vơi 2y - 1 = 5

\(\Rightarrow\begin{cases}x=8\\y=3\end{cases}\)

(+) Vơi 2y - 1 = 1

\(\Rightarrow\begin{cases}x=40\\y=1\end{cases}\)

(+) Vơi 2y - 1 = - 5

\(\Rightarrow\begin{cases}x=-8\\y=-4\end{cases}\)

(+) Vơi 2y - 1 = - 1

\(\Rightarrow\begin{cases}x=-40\\y=0\end{cases}\)

Vậy \(\left(x;y\right)\in\left\{\left(8;3\right);\left(40;1\right);\left(-8;-4\right);\left(-40;0\right)\right\}\)
6 tháng 4 2017

<=> \(x^3-x+y^{3_{ }}-y+z^3-z=2017\)

<=>\(\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z-1\right)z\left(z+1\right)=2017\)(1)

vì \(x-1;x;x+1\)là 3 sô nguyên liên tiếp nên tích của chúng chia hết cho 3=>vế trái (1) chia hết cho 3

Mà 2017 không chia hết cho 3

=>Phương trình đã cho vô nghiệm

Áp dụng bđt bunhia cho 2 bộ số (1 ; 1 ; 1) và (x ; y ; z) ta có: 

(1 + 1 + 1).(x² + y² + z²) ≥ (x + y + z)² 

<=> 3(x² + y² + z²) ≥ 36 < do x+y+z=6 theo đề bài > 

<=> x² + y² + z² ≥ 12 => đpcm 

Dấu "=" xảy ra <=> x = y = z = 2 

----------------------------- 

2) xy/z + yz/x + zx/y ≥ x + y + z với x,y,z là các số thực dương 

Áp dụng bđt cô si cho 2 số thực dương ta có: 

xy/z + yz/x ≥ 2y 
yz/x + zx/y ≥ 2z 
xy/z + zx/y ≥ 2x 

Cộng vế với vế 3bđt trên ta được : 

xy/z + yz/x + zx/y ≥ x + y + z => đpcm 

Dấu "=" xảy ra <=> x = y = z 

----------------------------------- 

3) x² + 5y² - 4xy + 2x - 6y +3 > 0 với mọi x , y 

<=> (x² - 4xy + 4y²) + (2x - 4y) + 1 + (y² -2y + 1) + 1 > 0 

<=> [(x - 2y)² + 2(x - 2y) + 1] + (y - 1)² + 1 > 0 

<=> (x - 2y + 1)² + (y - 1)² + 1 > 0 => luôn đúng với mọi x,y 

=> đpcm 

Có gì không hiểu bạn cứ hỏi nhé ^_^