Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử có 3 số nguyên là p;q;r sao cho \(p^q+q^p=r\)
Khi đó r > 3 nên r là số lẻ
=> p.q không cùng tính chẵn lẻ
Giả sử p=2 là q là số lẻ khi đó \(2^q+q^2=r\)
Nếu q không chia hết cho 3 thì q^2 =1 (mod3)
Mặt khác vì q lẻ nên \(2^q\)= -1(mod3)
Từ đó suy ra: \(2^q+q^2⋮3\Rightarrow r⋮3\)(vô lí)
Vậy q=3 lúc đó \(r=2^3+3^2=17\)là số nguyên tố
Vậy p=2; q=3, r=17 hoặc p=3; q=2, r=17
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1)(2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{2x-y+z}{16-12+15}=\frac{33}{19}\)
Sau đó bạn tự tìm x, y, z là đc
Học tốt nhé :)
a) x2 - 1 = y2
<=> x2 - y2 = 1
<=> (x - y)(x + y) = 1 (*)
Do x; y ∈ N nên x - y; x + y ∈ Z
Từ (*) => x - y; x + y ∈ Ư(1) = {±1}
Ta có 2 TH sau:
+) x - y = 1 và x + y = 1 ...
+) x - y = -1 và x + y = -1 ...
Tự giải tiếp nha =))
Chắc vậy :v