Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{x+1}.3^y=12^x\Leftrightarrow2^x.2.3^y=12^x\Leftrightarrow2.3^y=6^x\Leftrightarrow2.3^y=2^x.3^x\)
Xét y=0 \(\Rightarrow2.3^0=6^x\Leftrightarrow2=6^x\) (pt vô nghiệm)
Xét y=1 \(\Rightarrow6=6^x\Leftrightarrow x=1\)
Xét \(y\ge2\Rightarrow x>1\)
\(\Leftrightarrow3^y=2^{x-1}.3^x\) (VT không chia hết cho 2, VP chia hết cho 2 suy ra vô lí)
x+y=-2
Áp dụng t/c dãy tỉ số = nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y}{3+4}=\frac{-2}{7}\)
Suy ra x=\(\frac{-6}{7}\)
y=\(\frac{-8}{7}\)
z= thay vào dãy tỉ số tính hok tốt
a) \(\Rightarrow10^x=20^y.5^y\)
\(\Rightarrow10^x=100^y\)
\(\Rightarrow10^x=10^{2y}\)
\(\Rightarrow x=2y\)
Vậy mọi x=2y đều thỏa mãn
a. Từ giả thiết ta có x > y.
\(2^x-2^y=2^4\Rightarrow2^y\left(2^{x-y}-1\right)=2^4\). Do \(2^{x-y}-1\) không chia hết cho 2 với mọi x khác y nên để thỏa mãn đẳng thức trên thì \(2^{x-y}-1=1\Rightarrow x-y=1\)
Khi đó \(2^y=2^4\Rightarrow y=4\Rightarrow x=5.\)
b . Do vai trò x, y như nhau nên giả sử \(x\ge y.\)
\(2^x+2^y=2^4\Rightarrow2^y\left(2^{x-y}+1\right)=2^4\) Lập luận tương tự ta có \(2^{x-y}+1=1\Rightarrow x=y\).
Khi đó \(2.2^y=2^4\Rightarrow y=3\Rightarrow x=3.\)
a, \(\frac{xy}{2y+4x}=\frac{yz}{4z+6y}=\frac{zx}{6x+2z}=\frac{x^2+y^2+z^2}{2^2+4^2+6^2}\) (2)
Xét \(x=0\Rightarrow y=z=0\Rightarrow2y+4z=0\) (vô lí)
\(\Rightarrow x\ne0;y\ne0;z\ne0\)
Khi đó từ (2) \(\Rightarrow\frac{2y+4x}{xy}=\frac{4z+6y}{yz}=\frac{6x+2z}{zx}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)
\(\Rightarrow\frac{2}{x}+\frac{4}{y}=\frac{4}{y}+\frac{6}{z}=\frac{6}{z}+\frac{2}{x}=\frac{2^2+4^2+6^2}{x^2+y^2+z^2}\)
\(\Rightarrow\frac{2}{x}=\frac{4}{y}=\frac{6}{z}\) và \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=2.\frac{2}{x}\)
Đặt \(\frac{2}{x}=\frac{4}{y}=\frac{6}{z}=\frac{1}{k}\left(k\ne0\right)\)thì \(\frac{2^2+4^2+6^2}{x^2+y^2+z^2}=\frac{2}{k}\)
\(\Rightarrow x=2k;y=4k;z=6k\)và \(x^2+y^2+z^2=28k\) (3)
\(thay\) \(x=2k;y=4k;z=6k\)vào (3) ta được :
\(\left(2k\right)^2+\left(4k\right)^2+\left(6k\right)^2=28k\)
\(56k^2-28k=0\)
\(56k.\left(2k-1\right)=0\)
\(\Rightarrow k=0\)(loại)
Hoặc \(k=\frac{1}{2}\)( thỏa mãn)
Với \(k=\frac{1}{2}\)thì tìm được \(x=1;y=2;z=3\)
Vậy \(x=1;y=2;z=3\)
Ta có :
\(|x-y|+|y-z|+|z-x|=2019\)
\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)=2019\)
Nhận xét :
\(|a|+a=0\)với \(a\le0\)
\(|a|+a=2a\)với \(a\ge0\)
\(\Rightarrow|a|+a\)luôn chẵn với \(\forall a\)
\(\Rightarrow|x-y|+\left(x-y\right)+|y-z|+\left(y-z\right)+|z-x|+\left(z-x\right)\)luôn chẵn với \(\forall x,y,z\)
mà \(2019\)lẻ
\(\Rightarrow\left(đpcm\right)\)
Ta có: 2x + 1 . 3y = 12x
=> 2x.2.3y = 12x
=> 2.3y = 12x : 2x
=> 2.3y = 6x
=> 2.3y = 2x . 3x
=> x = 1
=> y = x
=> y = 1
Ta có: 2x + 1 . 3y = 12x
=> 2x.2.3y = 12x
=> 2.3y = 12x : 2x
=> 2.3y = 6x
=> 2.3y = 2x . 3x
=> x = 1
=> y = x
=> y = 1
Vậy .....
Tk mik va ket ban voi mik nha
\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)và x + y -z = 10
\(\frac{x}{2}=\frac{y}{3}=\frac{1}{4}.\frac{x}{2}=\frac{1}{4}.\frac{y}{3}\)\(=\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=\frac{1}{3}.\frac{y}{4}=\frac{1}{3}.\frac{z}{5}=\frac{y}{12}=\frac{z}{15}\)
\(\Leftrightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)và x + y - z = 10
Theo tính chất dãy tỉ số bằng nhau:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
* \(\frac{x}{8}=2\Rightarrow x=2.8=16\)
* \(\frac{y}{12}=2\Rightarrow y=2.12=24\)
* \(\frac{z}{5}=2\Rightarrow z=2.5=10\)
Vậy...
Ý mk nhầm chút xíu nhé! Cko sorry!
* \(\frac{z}{15}=2\Rightarrow z=2.15=30\)
... :( Xl
\(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y=11879\)
\(\Rightarrow\left(2^x+1\right)\left(2^x+4\right)\left(2^x+2\right)\left(2^x+3\right)=11879+5^y\)
\(\Rightarrow\left(2^{2x}+5.2^x+4\right)\left(2^{2x}+5.2^x+6\right)=11879+5^y\)(1)
Đặt \(2^{2x}+5.2^x+4=k\)
\(\left(1\right)\)trở thành: \(t\left(t+2\right)=11879+5^y\)
\(\Rightarrow t^2+2t+1=11880+5^y\)
\(\Rightarrow\left(t+1\right)^2=11880+5^y\)
hay \(\left(2^{2x}+5.2^x+5\right)^2=11880+5^y\)
+) Xét y = 0 thì \(\left(2^{2x}+5.2^x+5\right)^2=11881\)
\(\Rightarrow2^{2x}+5.2^x+5=109\)
\(\Rightarrow2^{2x}+5.2^x=104\Rightarrow2^x\left(8+5\right)=104\)
\(\Rightarrow2^x=8\Rightarrow x=3\)
+) Xét \(y>0\)thì \(11880+5^y⋮5\)
Mà \(\left(2^{2x}+5.2^x+5\right)^2\)không chia hết cho 5 nên loại y >0
Vậy y = 0; x = 3
Anh có cách này khác nè, em tham khảo nhé !!
Ta có : \(2^x\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)⋮5\)
mà : \(2^x⋮̸5\) \(\Rightarrow\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)⋮5\)
Mặt khác \(11879⋮̸5\Rightarrow5^y⋮̸5\)
\(\Rightarrow y=0\)
\(\Rightarrow\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)=11880=9\cdot10\cdot11\cdot12\)
\(\Rightarrow x=3\) ( thỏa mãn )
Vậy : \(x=3,y=0\) thỏa mãn đề.