K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2019

\(P=\frac{x\sqrt{x}-8}{x+2\sqrt{x}+4}+3\left(1-\sqrt{x}\right).\)

\(=\frac{\sqrt{x^3}-2^3}{x+2\sqrt{x}+4}+3-3\sqrt{x}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{x+2\sqrt{x}+4}+3-3\sqrt{x}\)

\(=\sqrt{x}-2+3-3\sqrt{x}=-2\sqrt{x}+1\)

\(Q=\frac{2P}{1-P}=\frac{2\left(-2\sqrt{x}+1\right)}{1-\left(-2\sqrt{x}+1\right)}\)

\(=\frac{-4\sqrt{x}+2}{1+2\sqrt{x}-1}=\frac{-2\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{-2\sqrt{x}}{\sqrt{x}}+\frac{1}{\sqrt{x}}=-2+\frac{1}{\sqrt{x}}\)

\(Q\in Z\Leftrightarrow-2+\frac{1}{\sqrt{x}}\in Z\Rightarrow\frac{1}{\sqrt{x}}\in Z\)

\(\Rightarrow1\)\(⋮\)\(\sqrt{x}\)\(\Rightarrow\sqrt{x}\inƯ_1\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=1\\\sqrt{x}=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)

Vậy \(Q\in Z\Leftrightarrow x=1\)

28 tháng 10 2014

xin lỗi em mới lớp 8 ko trả lời dc

12 tháng 10 2018

đầu tiên ta chứng minh với x,y,z,t bất kì thì:

\(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\) (*)

thật vậy bđt (*) tương đương với: 

\(x^2+y^2+z^2+t^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge x^2+2xz+z^2+y^2+2yt+t^2\)

\(\Leftrightarrow\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge xz+yt\)

bđt trên đúng vì theo bđt bunhia cốp xki

\(\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge\sqrt{\left(xz+yt\right)^2}=|xz+yt|\ge xz+yt\)

Áp dụng (*) ta có:

\(P=\sqrt{4+x^4}+\sqrt{4+y^4}+\sqrt{4+z^4}\ge\sqrt{\left(2+2\right)^2+\left(x^2+y^2\right)^2}+\sqrt{4+z^2}\)

\(\ge\sqrt{\left(2+2+2\right)^2+\left(x^2+y^2+z^2\right)^2}=\sqrt{36+\left(x^2+y^2+z^2\right)^2}\)

Ta có:

\(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Rightarrow3x^2+3y^2+3z^2+3\ge2x+2y+2z+2xy+2yz+2zx=2.6=12\)

\(\Rightarrow x^2+y^2+z^2\ge3\Rightarrow P\ge\sqrt{36+3}=3\sqrt{5}\)

Dấu bằng xảy ra khi x=y=z=1

9 tháng 12 2019

a) DK : x > 0; x khác 1

 \(P=\sqrt{x}\left(\sqrt{x}-1\right)-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)

\(=x-\sqrt{x}+1\)

c )  \(Q=\frac{2\sqrt{x}}{P}=\frac{2\sqrt{x}}{x-\sqrt{x}+1}\)

<=> \(xQ-\left(Q+2\right)\sqrt{x}+Q=0\)(1)

TH1: Q = 0 => x = 0 loại

TH2: Q khác 0

(1) là phương trình bậc 2 với tham số Q ẩn x.

(1) có nghiệm <=> \(\left(Q+2\right)^2-4Q^2\ge0\)

<=> \(-3Q^2+4Q+4\ge0\)

<=> \(-\frac{2}{3}\le Q\le2\)

Vì Q nguyên và khác 0 nên Q =  1 hoặc Q = 2

Với Q = 1 => \(x-3\sqrt{x}+1=0\)

<=> \(\sqrt{x}=\frac{3}{2}\pm\frac{\sqrt{5}}{2}\)----> Tìm được x 

Với Q = 2 => \(2x-4\sqrt{x}+1=0\Leftrightarrow\sqrt{x}=1\pm\frac{1}{\sqrt{2}}\)-----> tìm đc x.

Tự làm tiếp nhé! Kiểm tra lại đề bài câu b.

15 tháng 6 2016

http://olm.vn/hoi-dap/question/104313.html

coi hỉu j ko tui đang mò

Áp dụng bđt AM-GM ta có

\(\sqrt{3x\left(2x+y\right)}+\sqrt{3y\left(2y+x\right)}\le\frac{3x+2x+y}{2}+\frac{3y+2y+x}{2}=\frac{6\left(x+y\right)}{2}=3\left(x+y\right)\)

\(\Rightarrow P\ge\frac{x+y}{3\left(x+y\right)}=\frac{1}{3}\)

Dấu "=" xảy ra khi x=y

4 tháng 6 2016

\(\sqrt{x^2+x+3}=\frac{\sqrt{4\left(x^2+x+3\right)}}{2}=\frac{\sqrt{\left(2x+1\right)^2+11}}{2}\in Q\)

\(\Leftrightarrow\sqrt{\left(2x+1\right)^2+11}\in Q\Leftrightarrow\left(2x+1\right)^2+11=y^2\text{ }\left(y\in N\right)\)

\(\Leftrightarrow\left(2x+1\right)^2-y^2=-11\)

\(\Leftrightarrow\left(2x+1-y\right)\left(2x+1+y\right)=-1.11=-11.1\)

\(\Rightarrow\hept{\begin{cases}2x+1-y=-11\\2x+1+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=6\end{cases}}}\)

hoặc \(\hept{\begin{cases}2x+1-y=-1\\2x+1+y=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}\)

\(KL:x\in\left\{-3;2\right\}\)

dễ thế mà ko biết