Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x\(^2\)+y\(^2\)+3xy+3x+2y+2=0
\(\Leftrightarrow\)16x\(^2\)+8y\(^2\)+24xy+24x+16y+16=0
\(\Leftrightarrow\)(4x)\(^2\)+24x(y+1)+8y\(^2\)+16y+16=0
\(\Leftrightarrow\)(4x)\(^2\)+24x(y+1)+[3(y+1)]\(^2\)-[3(y+1)]\(^2\)+8y\(^2\)+16y+16=0
\(\Leftrightarrow\)(4x+3y+3)\(^2\)-9y\(^2\)-18y-9+8y\(^2\)16y+16=0
\(\Leftrightarrow\)(4x+3y+3)\(^2\)-y\(^2\)-2y-1+8=0
\(\Leftrightarrow\)(4x+3y+3)\(^2\)- (y+1)\(^2\)= -8
\(\Leftrightarrow\)(y+1+4x+3y+3) (y+1-4x-3y-3)=8
\(\Leftrightarrow\)4(x+y+4) (-4-2y-2)=8
\(\Leftrightarrow\)(x+y+4) (2x+y+11)= -1
\(\Leftrightarrow\){x+y+4= -1
{2x+y+1=1
\(\Rightarrow\)x=2 và y= -4
{x+y+4= 1
{2x+y+1= -1
\(\Rightarrow\)x=-2 và y=2
vậy nghiệm (x,y)=(-2;4) (-2;2)
tìm điều kiện của K để A chia hết cho 16 biết A=K ^4+2^ 3-16k^ 2-2k -15
Ta có: \(x=\sqrt{2x\left(x-y\right)+2y-x+2}\)(1)
Vì x > 0 nên \(\left(1\right)\Leftrightarrow x^2=2x\left(x-y\right)+2y-x+2\)
\(\Leftrightarrow x^2-2x^2+2xy-2y+x=2\Leftrightarrow\left(1-x\right)\left(x-2y\right)=2\)
Do x, y là số nguyên nên ta có bảng sau:
Mà x, y dương nên có các cặp số nguyên (x; y) thỏa mãn là (2; 2) và (3; 2)