Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 4 : Ta có : \(\frac{1+2y}{18}=\frac{1+4y}{24}\left(1\right)\)
\(\Rightarrow24+48y=18+72y
\)
\(\Rightarrow y=\frac{1}{4}\)
\(\frac{1+4y}{24}=\frac{1+6y}{6x}\left(2\right)\)
Thay y = \(\frac{1}{4}\) vào (2) ta được x = 5 (thõa mãn )
a) \(\frac{1}{y}+\frac{x}{4}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{y}=\frac{1}{2}-\frac{x}{4}\)
\(\Rightarrow\frac{1}{y}=\frac{2-x}{4}\)
\(\Leftrightarrow\left(2-x\right).y=4\)
Do \(x,y\inℤ\Rightarrow2-x,y\inℤ\)
nên \(2-x,y\) là các cặp ước của 4
Ta có bảng giá trị :
2-x | 1 | -1 | 2 | -2 | 4 | -4 |
x | 1 | 3 | 0 | 4 | -2 | 6 |
y | 4 | -4 | -2 | 2 | 1 | -1 |
Đánh giá | Chọn | Chọn | Chọn | Chọn | Chọn | Chọn |
Vậy : \(\left(x,y\right)\in\left\{\left(1,4\right);\left(3,-4\right);\left(0,-2\right);\left(4,2\right);\left(-2,1\right);\left(6,-1\right)\right\}\)
b) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\Rightarrow\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\Rightarrow\frac{5}{x}=\frac{1-2y}{8}\)
\(\Leftrightarrow x.\left(1-2y\right)=40\)
Nhận xét x,y và lập bảng giá trị tương tự câu a).
5/x = 1/8 - y/4 = (1-2y)/8
<=> x = 5*8/(1-2y) ; thấy 1-2y là số lẻ nên UCLN(8,1-2y) = 1
do đó x/8 = 5/(1-2y) (*)
x, y nguyên khi 1-2y phải là ước của 5
* 1-2y = -1 => y = 1 => x = -40
* 1-2y = 1 => y = 0 => x = 40
* 1-2y = -5 => y = 3 => x = -8
* 1-2y = 5 => y = -2 => x = 8
vậy có 4 cặp (x,y) nguyên (-40,1) ; (40, 0) ; (-8, -5) ; (8, 5)
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)
\(\frac{5}{x}=\frac{1}{8}-\frac{y}{4}\)
\(\frac{5}{x}=\frac{1}{8}-\frac{2y}{8}=\frac{1-2y}{8}\)
\(=>5.8=x.\left(1-2y\right)=40\)
Ta có : 1-2y là ước lẻ của 40.
=>1-2y thuộc {01;1;-5;5}
Bạn tự thay vào rồi tìm x
a) x = 6 ; y = 15.
x = -6 ; y = -15.
b) x = 2 ; y = 2.
x = -2 ; y = -2.
Ta có: \(\frac{1}{x}+\frac{1}{y}=\frac{1}{p}\)⇔ p(x+y)=xy (1)
Vì p là số nguyên tố nên suy ra trong hai số x,y luôn có 1 số chia hết cho p.
Không mất tính tổng quát ta giả sử: x ⋮ p ⇒ x=kp (k∈N∗)
Nếu k=1, thay vào (1) ta được: p(p+y)=p ⇒ p+y=1, vô lí.
Do đó k≥2. Từ (1) suy ra: p(kp+y)=kp.y ⇔ y=\(\frac{kp}{k-1}\)
Do y∈N∗ mà (k;k−1)=1 ⇒ p ⋮ k−1 ⇒ k−1∈{1;p}
∙ k−1=1 ⇒ k=2⇒x=y=2p
∙ k−1 = p ⇒ k=p+1 ⇒ x=p(p+1),y=p+1
Vậy phương trình có ba nghiệm là: (2p;2p),(p+1;p2+p),(p2+p;p+1).
Giả sử \(1\le x< y< z\)
\(\Rightarrow\frac{1}{x}>\frac{1}{y}>\frac{1}{z}\)
\(\Rightarrow\frac{3}{x}>\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)
=> x < 3 (1)
Mà \(\frac{1}{x}< 1\) => x > 1 (2)
Từ (1) và (2) => x = 2
Ta có: \(\frac{1}{2}+\frac{1}{y}+\frac{1}{z}=1\)
\(\Rightarrow\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)
\(\Rightarrow\frac{2}{y}>\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\)
=> y < 4 (3)
Mà x < y => 2 < y (4)
Từ (3) và (4) => y = 3
Lại có: \(\frac{1}{3}+\frac{1}{z}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{z}=\frac{1}{6}\)
=> z = 6
Vậy x = 2, y = 3, z = 6
Cho phương trình với x, y là số nguyên:
\(\frac{5}{x}=\frac{y}{4}=\frac{1}{8}\)
Nhân 2 vế của phương trình với 8x ta được :
\(40+2xy=x\)
\(\Rightarrow2xy-x=-40\)
\(\Rightarrow x\left(2y-1\right)=-40\)
\(\Rightarrow2y-1=-\frac{40}{x}\)
2y - 1 là một số nguyên nên x là một ước số của 40.
2y - 1 là một số lẻ cho nên \(-\frac{40}{x}=-2\left(\frac{20}{x}\right)\) là số lẻ.
Vậy x không phải là ước số của 20
Trong các ước số của 40 là 1, 2, 4, 5, 8, 10, 20, 40 thì 8 không phải ước số của 20
Vậy x = 8 => y = -2
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\) (ĐK : \(x\ne0\))
\(\Leftrightarrow\frac{20+xy}{5x}=\frac{1}{8}\)
\(\Leftrightarrow160+8xy=4x\)
\(\Leftrightarrow40=x\left(1-2y\right)\)
Tới đây xét từng trường hợp là ra :)
x/4-1/y=1/2
=> 1/y=x/4-1/2
=> 1/y=x/4-2/4
=>x=2+1;y=4
=>x=3;y=4.
vay x=3;y=4
X=3
Y=4