Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức x2+y2≥2xyx2+y2≥2xy nên ta có x2+y2+xy≥3xyx2+y2+xy≥3xy
Mà x2+y2+xy=x2y2≥0x2+y2+xy=x2y2≥0 nên suy ra x2y2+3xy≤0⟺−3≤xy≤0x2y2+3xy≤0⟺−3≤xy≤0
Vì x,yx,y nguyên nên xyxy nguyên, vậy nên xy∈{−3,−2,−1,0}xy∈{−3,−2,−1,0}
Trường hợp xy=−3xy=−3 ta tìm được các nghiệm (−1,3),(3,−1),(−3,1),(1,−3)(−1,3),(3,−1),(−3,1),(1,−3)
Trường hợp xy=−2xy=−2 ta tìm được các nghiệm (−1,2),(2,−1),(1,−2),(−2,1)(−1,2),(2,−1),(1,−2),(−2,1)
Trường hợp xy=−1xy=−1 ta tìm được các nghiệm (−1,1),(1,−1)(−1,1),(1,−1)
Trường hợp xy=0xy=0 ta tìm được nghiệm (0,0)(0,0)
Thử lại thì thấy chỉ có các nghiệm (0,0),(1,−1),(−1,1)(0,0),(1,−1),(−1,1) thỏa mãn và đó là các nghiệm nguyên cần tìm
\(\left(2y^2x-2y^2\right)+\left(x-x^2\right)+\left(y-xy\right)+1=0\)
<=> \(2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)+1=0\)
<=> \(\left(x-1\right)\left(2y^2-x-y\right)=-1\)
Vì x, y nguyên nên \(x-1;2y^2-x-y\)nguyên
Có 2 TH
+) Trường hợp 1
\(\hept{\begin{cases}x-1=1\\2y^2-x-y=-1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y^2-y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\2y^2-2y+y-1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\2y\left(y-1\right)+\left(y-1\right)=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\\left(2y+1\right)\left(y-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)vì x, y là số nguyên (thỏa mãn
+ Trương hợp 2
\(\hept{\begin{cases}x-1=-1\\2y^2-x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\2y^2-y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}}\)thỏa mãn
VÂỵ ....
Câu hỏi của Fire Sky - Toán lớp 8 - Học toán với Em tham khảo tại link này nhé!
x2+ x = xy + y +3
x(x+) = y(x+1) +3
x(x+1) - y(x+1)= 3
(x+1)(x-y)=3.Vì (x+1)(x-y)=3 nên (x+1) và (x-y) thuộc Ư(3)={-3,-1,1,3}. ĐK: x,y thuộc Z
Ta xét các TH:
TH1: x+1=1 và x-y=3. Ta được: x=0 và y= -3 (thỏa mãn ĐK)
TH2: x+1=3 và x-y=1. Ta được: x=2 và y=1 (thỏa mãn ĐK)
Th3: x+1=-1 và x-y=-3 Ta được: x=-2 và y=1 (thỏa mãn ĐK)
Th4: x+1=-3 và x-y=-1.Ta được: x=-4 và y=-3 (thỏa mãn ĐK)
Vậy các cặp {x,y} thỏa mãn : {0,-3} ; {2,1} ; {-2,1} ; {-4;-3}
\(a)\)\(xy-x-y=1\)
\(\Leftrightarrow\)\(\left(xy-x\right)-\left(y-1\right)=2\)
\(\Leftrightarrow\)\(x\left(y-1\right)-\left(y-1\right)=2\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(y-1\right)=2\)
\(\Rightarrow\)\(\left(x-1\right);\left(y-1\right)\inƯ\left(2\right)\)
Lập bảng :
\(x-1\) | \(1\) | \(2\) | \(-1\) | \(-2\) |
\(y-1\) | \(2\) | \(1\) | \(-2\) | \(-1\) |
\(x\) | \(2\) | \(3\) | \(0\) | \(-1\) |
\(y\) | \(3\) | \(2\) | \(-1\) | \(0\) |
Vậy \(\left(x,y\right)\in\left\{\left(2;3\right),\left(3;2\right),\left(0;-1\right),\left(-1;0\right)\right\}\)
Chúc bạn học tốt ~
\(b)\)\(xy-2x-2y=1\)
\(\Leftrightarrow\)\(\left(xy-2x\right)-\left(2y-4\right)=5\)
\(\Leftrightarrow\)\(x\left(y-2\right)-2\left(y-2\right)=5\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(y-2\right)=5\)
\(\Rightarrow\)\(\left(x-2\right);\left(y-2\right)\inƯ\left(5\right)\)
Lập bảng :
\(x-2\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y-2\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(x\) | \(3\) | \(7\) | \(1\) | \(-3\) |
\(y\) | \(7\) | \(3\) | \(-3\) | \(1\) |
Vậy \(\left(x;y\right)\in\left\{\left(3;7\right),\left(7;3\right),\left(1;-3\right),\left(-3;1\right)\right\}\)
Chúc bạn học tốt ~
x2+xy+y2=x2.y2
=>x2+2xy+y2=(x.y)2+xy
=>(x+y)2=xy.(xy+1)
=>xy.(xy+1) là số chính phương.
mà (xy,xy+1)=1, xy<xy+1
=>xy=xy+1=> vô lí
hoặc xy=0=>xy.(xy+1)=0=02=>x+y=0=xy=>x=y=0
Vậy x=0,y=0
=> x2 + 2xy + y2 = x2y2 + xy
<=> (x+y)2 = (xy + 1/2 )2 - 1/4
<=> (2x+2y)2 = (2xy + 1)2 - 1
<=> (2xy + 1)2 - (2x+ 2y)2 = 1
<=> (2xy + 1+ 2x+2y).(2xy + 1 - 2x- 2y) = 1 = 1.1 = (-1).(-1)
x; y nguyên nên ta có 2 trường hợp:
TH1: 2xy + 2x+ 2y + 1 = 1 và 2xy - 2x - 2y + 1 = 1
=> xy + x + y = 0 và 2xy + 2x+ 2y + 1 + 2xy - 2x - 2y + 1 = 2
=> xy + x + y = 0 và xy = 0
=> x + y = 0 và xy = 0 => x = y = 0
Th2: tương tự...