K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

b) 5x2 +5y2 +8xy + 2x-2y+2 = 0

(x2 +2x+1) + (y2 -2y+1) + (4x2 +8xy + 4y2) = 0

(x+1)2 + (y-1)2 +(2x+2y)2 = 0

=> (x+1)2 = 0 => x = -1

(y-1)2 = 0 => y = 1

(2x+2y)2 = 0

KL: x = -1; y = 1

a) 3x2 +5y= 345 

=> x2 chia hết cho 5

=> x chia hết cho 5

đặt x = 5t=> 75t2+5y2 =345⇒15t2+y2 =69⇒y chia hết cho 3

đặt y = 3z => 15t2+9z2 =69

⇒5t2 +3z2 =23

...

29 tháng 7 2019

toan lop 8 nha minh kik nham

8 tháng 7 2019

a) 2xy - 3x + 5y = 4

=> 2(2xy - 3x + 5y) = 8

=> 4xy + 6x + 10y = 8

=> 2x(2y + 3) + 5(2y + 3) = 23

=> (2x + 5)(2y + 3) = 23

=> 2x + 5; 2y + 3 \(\in\)Ư(23) = {1; -1; 23; -23}

Lập bảng:

2x + 5 1 -1 23 -23
2y + 3 23 -23 1  -1
   x -2 -3 9 -14
   y 10 -13 -1 -2

Vậy ...

1 tháng 4 2018

Phần I/Trắc nghiệm

Câu 1 2 3
Đáp án A C D

Phần 2/Tự luận

Hỏi đáp Toán

3 tháng 4 2017

1)3x4-5x3y+6x2-10xy+2

=(3x4-5x3y)+(6x2-10xy)+2

=x3(3x-5y)+2x(3x-5y)+2

=x3.0+2x.0+2

=0+0+2

=2

2) x5-2010x4+2010x3-2010x2+2010x-2020

=x5-(2009+1)x4+(2009+1)x3-(2009+1)x2+(2009+1)x-2009-11

=x5-(x+1)x4+(x+1)x3-(x+1)x2+(x+1)x-x-11

=x5-x5-x4+x4+x3-x3-x2+x2+x-x-11

=-11

18 tháng 3 2018

2, Với x= 2009 => 2010=x+1

=> \(x^5-2010\text{x}^4+2010\text{x}^3-2010\text{x}^2+2010\text{x}-2020=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x+1\right)x-2020\)

\(=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2+x-2020\)

\(=x-2020\)

\(=2009-2020\\ =-11\)

8 tháng 4 2017

vì 6x2 và 74 \(⋮2\)

=> 5y2 \(⋮2\)

=> y2 \(⋮2\)( vì (5,2) = 1 )

=> y = 2 ( vì 2 là số nguyên tố chẵn duy nhất )

thay y = 2 vào bài ta được:

6x2 + 5.4 = 74

6x2 = 54

x2 = 9 

=> x = 3

vậy x = 3 và y = 2

8 tháng 4 2017

 6x2 + 5y2 = 74 (1) 
Ta có : 5x2 + 5y2 =< 6x2 + 5y2 =< 6x2 + 6y2
<=> 5(x2 + y2) =< 74 =< 6(x2 + y2
<=> 12,3 =< x2 + y2 =< 14,8 
<=> 13 =< x2 + y2 =< 14 (vì x, y tự nhiên => x2 + y2 tự nhiên) 
Trường hợp 1 : x2 + y2 = 13 (2) 
Ta có hệ : 
6x2 + 5y2 = 74 (1) 
x2 + y2 = 13 (2) 
<=> 6x2 + 5y2 = 74 
5x2 + 5y2 = 65 
Trừ 2 phương trình : x2 = 9 <=> x = 3 (vì x >= 0) 
Thay vào (2) y2 = 13 - x2 = 13 - 9 = 4 <=> x = 2 
Nghiệm : (x ; y) = (2 ; 3) 
Trường hợp 2 : x2 + y2 = 14 (4) 
Ta có hệ : 
6x2 + 5y2 = 74 (1) 
x2 + y2 = 14 (3) 
<=> 6x2 + 5y2 = 74 
5x2 + 5y2 = 70 
Trừ 2 phương trình : x2 = 4 <=> x = 2 
Thay vào (3) : y2 = 14 - 4 = 10 <=> y = \(\sqrt{10}\) (loại) 
Vậy phương trình có nghiệm nguyên duy nhất là (x ; y) = (2 ; 3) .

9 tháng 4 2017

Ta có:

\(6x^2+5y^2=74\left(1\right)\)

Từ \(\left(1\right)\Rightarrow\hept{\begin{cases}x^2+1⋮5\\0< x^2\le12\end{cases}\Rightarrow\orbr{\begin{cases}x^2=4\\x^2=9\end{cases}}}\)

Với \(x^2=4\Rightarrow y^2=10\) (loại)

Với \(x^2=9\Rightarrow y^2=4\) (thỏa mãn)

\(\Rightarrow\hept{\begin{cases}x^2=9\\y^2=4\end{cases}\Rightarrow\hept{\begin{cases}x=\sqrt{9}\\y=\sqrt{4}\end{cases}\Rightarrow}\hept{\begin{cases}x=\left(-3;3\right)\\y=\left(-2;2\right)\end{cases}}}\)

Vậy...