\(\frac{21n+3}{7}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

kết bạn mình nha

12 tháng 4 2018

* Ta có : 

\(P=\frac{3a-2017}{2a-1}+\frac{a+2018}{2a-1}\)

\(P=\frac{3a-2017+a+2018}{2a-1}\)

\(P=\frac{4a+1}{2a-1}=\frac{4a-2+3}{2a-1}=\frac{4a-2}{2a-1}+\frac{3}{2a-1}=\frac{2\left(2a-1\right)}{2a-1}+\frac{3}{2a-1}=2+\frac{3}{2a-1}\)

Để P là số nguyên thì \(\frac{3}{2a-1}\) phải là số nguyên hay \(3⋮\left(2a-1\right)\)\(\Rightarrow\)\(\left(2a-1\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Suy ra : 

\(2a-1\)\(1\)\(-1\)\(3\)\(-3\)
\(a\)\(1\)\(0\)\(2\)\(-1\)

Vậy \(a\in\left\{-1;0;1;2\right\}\) thì P là số nguyên 

Chúc bạn học tốt ~ 

12 tháng 4 2018

\(P=\frac{3a-2017}{2a-1}+\frac{a+2018}{2a-1}\)

\(P=\frac{3a-2017+a+2018}{2a-1}\)

\(P=\frac{4a+1}{2a-1}\)

để \(P\in Z\) thì \(a\in Z\) 

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

10 tháng 7 2017

Phân số nguyên 

<=> n + 4 = n + 2 + 2 chia hết cho n + 2

<=> 2 chia hết cho n + 2

=> n + 2 thuộc Ư(2) = {1 ; -1 ; 2 ; -2}

Còn lại , tự lập bảng xét giá trị của n 

10 tháng 7 2017

Ta có :  \(\frac{n+4}{n+2}=\frac{n+2+2}{n+2}=\frac{n+2}{n+2}+\frac{2}{n+2}=1+\frac{2}{n+2}\)

Để \(\frac{n+4}{n+2}\in Z\) thì 2 chia hết cho n + 2

=> n + 2 thuộc Ư(2) = {-2;-1;1;2}

Ta có bảng : 

n + 2-2-112
n-4-3-10
28 tháng 8 2020

a) Để \(\frac{3}{x-1}\inℤ\Rightarrow\left(x-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{-2;0;2;4\right\}\)

b) Để \(\frac{4}{2x-1}\inℤ\Rightarrow\left(2x-1\right)\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

=> \(2x\in\left\{-3;-1;0;2;3;5\right\}\)

=> \(x\in\left\{-\frac{3}{2};-\frac{1}{2};0;1;\frac{3}{2};\frac{5}{2}\right\}\)

c) Ta có: \(\frac{3x+7}{x-7}=\frac{\left(3x-21\right)+28}{x-7}=2+\frac{28}{x-7}\)

Xong xét các TH như a,b nhé

thanks nhưng mai mik mới t.i.k đc bạn

27 tháng 7 2018

a) \(\frac{5n+1}{n+2}\in Z\Leftrightarrow5n+1⋮n+2\)

\(\Rightarrow n+n+n+n+n+1⋮n+2\)

\(\Rightarrow\left(n+2\right)+\left(n+2\right)+\left(n+2\right)+\left(n+2\right)+\left(n+2\right)-9⋮n+2\)

\(\Rightarrow9⋮n+2\)(vì \(n+2⋮n+2\))

\(\Rightarrow n+2\inƯ\left(9\right)\)

\(\Rightarrow n+2\in\left(1;3;9;-1;-3;-9\right)\)

\(\Rightarrow n\in\left(-1;1;7;-3;-5;-11\right)\)

vậy \(n\in\left(-1;1;7;-3;-5;-11\right)\)thì phân số trên có giá trị nguyên

24 tháng 5 2019

\(\frac{15}{n}\)nhận giá trị nguyên <=>n thuộc Ư(15)

                                       <=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}

     Vậy \(\frac{15}{n}\)đạt giá trị nguyên <=>n thuộc {1; -1; 3; -3; 5; -5; 15; -15}

24 tháng 5 2019

Để 3 phân số trên nhận giá trị nguyên thì
n\(\in\)Ư(15)=>n={\(\pm\)1;\(\pm\)3;\(\pm\)5;\(\pm\)15}

n+2\(\in\)Ư(12)

2n-5\(\in\)Ư(6)

=>n=\(\pm\)1;\(\pm\)3,...