K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2021

Ta có n2 + 2n - 8 = (n + 4)(n - 2)

Vì n > 0 => n + 4 > 0

=> Để n2 + 2n - 8 là số nguyên tố 

thì n - 2 = 1 => n = 3 

Thử lại 32 + 2.3 - 8 = 7 (đúng)

Vậy n = 3 thì n2 + 2n - 8 là số nguyên tố  

17 tháng 7 2021

Ta có 8n - 1 =(8 - 1)(8n - 1 + 8n - 2  + .... + 1) = 7(8n - 1 + 8n - 2 + .... + 1) 

=> 8n - 1 là số nguyên tố khi 8n - 1 + 8n - 2 + .... + 1 = 1

Khi đó 8n - 1 = 7

<=> 8n = 8

<=> n = 1

Vậy n = 1 thì 8n - 1 là số nguyên tố 

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
9 tháng 9 2020

Đặt \(3n+6=x^3,n+1=y^3\)vì \(n\inℕ^∗\)nên \(x>1,y>3\)và x,y nguyên dương

\(\left(3n+6\right)-\left(n+1\right)=x^3-y^3\)

\(\Leftrightarrow2n+5=\left(x-y\right)\left(x^2+xy+y^2\right)\)(1)

Vì 2n+5 là số nguyên tố nên chỉ có 2 ước là 1 và 2n+5 mà (x-y) và (x2+xy+y2) cũng là 2 ước của 2n-5 nên:

\(\orbr{\begin{cases}x-y=1,x^2+xy+y^2=2n+5\\x^2+xy+y^2=1,x-y=2n+5\end{cases}}\)mà \(x>1,y>3\)nên vế dưới không thể xảy ra.

Vậy \(\hept{\begin{cases}x=y+1\\x^2+xy+y^2=2n+5\end{cases}}\)thay vế trên vào vế dưới\(\Rightarrow\left(y+1\right)^2+y\left(y+1\right)+y^2=2n+5\)

\(\Rightarrow3y^2+3y+1=2n+5\)

Vậy ta xét \(\hept{\begin{cases}3y^2+3y+1=2n+5\\y^3=n+1\Rightarrow2y^3=2n+2\end{cases}}\)trừ 2 biểu thức vế theo vế:

\(\Rightarrow-2y^3+3y^2+3y+1=3\Leftrightarrow\left(y+1\right)\left(y-2\right)\left(1-2y\right)=0\)

Vì nguyên dương nên nhận y=2--->n=7

27 tháng 3 2020

Bài 1 : 

Phương trình <=> 2x . x2 = ( 3y + 1 ) + 15

Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)

\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)

( Vì số  chính phương chia 3 dư 0 hoặc 1 ) 

\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)

Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)

Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0

Vậy ta có các trường hợp: 

\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)

\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)

Vậy ( x ; y ) =( 2 ; 0 ) 

27 tháng 3 2020

Bài 3: 

Giả sử \(5^p-2^p=a^m\)    \(\left(a;m\inℕ,a,m\ge2\right)\)

Với \(p=2\Rightarrow a^m=21\left(l\right)\)

Với \(p=3\Rightarrow a^m=117\left(l\right)\)

Với \(p>3\)nên p lẻ, ta có

\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\)    \(\left(k\inℕ,k\ge2\right)\)

Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)

\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)

Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)

Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý

\(\rightarrowĐPCM\)

30 tháng 5 2020

TH1) Với n = 6k

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+1\right)\left(12k+1\right)\) không chia hết cho 6 

=> Loại 

TH2) Với n = 6k+1 

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+2\right)\left(12k+3\right)⋮6\)

=> \(A=\frac{\left(6k+2\right)\left(12k+3\right)}{6}=\left(3k+1\right)\left(4k+1\right)\)là số chính phương 

Lại có: ( 3k + 1 ; 4k + 1 ) = ( 3k + 1 ; k ) = ( 2k + 1 ; k ) = ( k + 1 ; k ) = ( k ; 1 ) = 1 

=> 3k + 1 và 4k + 1 đồng thời là 2 số chính phương 

+) Với k \(\equiv\)\(1,3,5,7\)(mod 8 ) => 4k + 1 không là số cp

+) Với k \(\equiv\)2; 4; 6 ( mod 8) => 3k + 1 không là số chính phương 

=> k \(\equiv\)0 ( mod 8) => k = 8h

=> Tìm h bé nhất để 24h + 1 và 32h + 1 là số chính phương(1)

+) Với h \(\equiv\)\(3,4,6\)( mod7) => 24k + 1 không là số chính phương 

+) Với h \(\equiv\)1  (mod 7 ) => 32h + 1 không là số cp 

=> h \(\equiv\)0; 2; 5 (mod 7 ) 

=> h = 7m hoặc h = 7n + 2 hoặc h = 7t + 7  ( với m;n; t nguyên dương )

Nếu m = 1 => h = 7 => 24h + 1 = 169 và 32h + 1 = 225 là hai số chính phương và h nhỏ nhất 

=> n = 6k + 1 và k = 8h = 56 

=> n = 337

=> A = 38025 là số chính phương

TH3) Với n = 6k + 2 

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+3\right)\left(12k+5\right)\)không chia hết cho 6

TH4) Với n = 6k + 3

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+4\right)\left(12k+7\right)\)không chia hết cho 6 

TH5) Với n = 6k + 4 

ta có: \(\left(n+1\right)\left(2n+1\right)=\left(6k+5\right)\left(12k+9\right)\)không chia hết cho 6

TH6) Với n = 6k + 5 

ta có \(\left(n+1\right)\left(2n+1\right)=\left(6k+6\right)\left(12k+11\right)⋮6\)

=> \(A=\frac{\left(6k+6\right)\left(12k+11\right)}{6}=\left(k+1\right)\left(12k+11\right)\)

mà ( k + 1; 12k + 11 ) = 1 

=> k + 1 và 12k + 11 là 2 số chính phương 

tuy nhiên 12k + 11 chia 12 dư 11 mà 1 số chính phương chia 12 không dư 11 

=> Trường hợp này loại 

Vậy  n = 337 

12 tháng 8 2020

phải là tìm các số x,y,z thỏa mãn chứ bạn

12 tháng 8 2020

VÌ:    \(x^3+y^3+1-3xy=\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)\)

Do:    \(x^3+y^3+1-3xy\)   là 1 số nguyên tố

=>   \(\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)\)    là 1 số nguyên tố.

Do:   \(x+y+1>1\left(x,y\inℕ^∗\right)\)

=>   \(x^2+y^2-xy-x-y+1=1\)

<=> \(2x^2+2y^2-2xy-2x-2y+2=2\)

<=> \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

Do:   \(\left(x-y\right)^2;\left(x-1\right)^2;\left(y-1\right)^2\)    đều là các số chính phương.

=> Ta xét 3 trường hợp sau: 

\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-1\right)^2=1\\\left(y-1\right)^2=1\end{cases}}\)   ;     \(\hept{\begin{cases}\left(x-y\right)^2=1\\\left(x-1\right)^2=0\\\left(y-1\right)^2=1\end{cases}}\)    ;       \(\hept{\begin{cases}\left(x-y\right)^2=1\\\left(x-1\right)^2=1\\\left(y-1\right)^2=0\end{cases}}\)

Do: x; y thuộc N* 

=> vs TH1 được: \(x=y=2\)

THỬ LẠI THÌ: \(x^3+y^3+1-3xy=8+8+1-12=5\)       (CHỌN)

TH2; TH3 tương tự ra       \(x=1;y=2\)   và     \(x=2;y=1\)

THỬ LẠI        \(\orbr{\begin{cases}x^3+y^3+1-3xy=1^3+2^3+1-3.1.2=4\\x^3+y^3+1-3xy=2^3+1^3+1-3.2.1=4\end{cases}}\)             (ĐỀU LOẠI HẾT).

VẬY \(x=y=2\)     là nghiệm duy nhất.