K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

Ta có:

\(x\left(x+y+z\right)=\frac{15}{2}\)

\(y\left(x+y+z\right)=\frac{-5}{2}\)

\(z\left(x+y+z\right)=20\)

=>\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\frac{-5}{2}+20\)

                                               \(\left(x+y+z\right)\left(x+y+z\right)=\frac{15-5}{2}+20\)

                                                                     \(\left(x+y+z\right)^2=\frac{10}{2}+20\)

                                                                     \(\left(x+y+z\right)^2=5+20\)

                                                                     \(\left(x+y+z\right)^2=25\)

=>x+y+z=5 hoặc x+y+x=-5

Với x+y+z=5

=>\(x.5=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{1}{5}=\frac{3}{2}\)

   \(y.5=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{1}{5}=\frac{-1}{2}\)

   \(z.5=20\)=>\(z=\frac{20}{5}=4\)

Với x+y+z=-5

=>\(x.\left(-5\right)=\frac{15}{2}\)=>\(x=\frac{15}{2}.\frac{-1}{5}=\frac{-3}{2}\)

   \(y.\left(-5\right)=\frac{-5}{2}\)=>\(y=\frac{-5}{2}.\frac{-1}{5}=\frac{1}{2}\)

   \(z.\left(-5\right)=20\)=>\(z=\frac{20}{-5}=-4\)

Vậy \(x=\frac{3}{2},y=-\frac{1}{2},z=4\)\(x=-\frac{3}{2},y=\frac{1}{2},z=-4\)

28 tháng 7 2017

Ta có:

\(x\left(x+y+z\right)+y\left(x+y+z\right)+z\left(x+y+z\right)=\frac{15}{2}+\left(-\frac{5}{2}\right)+20\)(Cộng vế với vế)

\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=\frac{50}{2}=25\)

\(\Rightarrow\left(x+y+z\right)^2=25\Leftrightarrow x+y+z=\sqrt{25}=5\)

\(\Rightarrow\hept{\begin{cases}x.5=\frac{15}{2}\Rightarrow x=\frac{3}{2}\\y.5=-\frac{5}{2}\Rightarrow y=-\frac{1}{2}\\z.5=20\Rightarrow z=4\end{cases}}\)

Vậy \(x=\frac{3}{2};y=-\frac{1}{2};z=4\).

20 tháng 2 2019

easy lắm 

Công vế theo vế ta được : x+y+y+z+x+z=\(\frac{-7}{6}\)+\(\frac{1}{4}\)+\(\frac{1}{12}\)=\(\frac{-5}{6}\)

Suy ra 2.(x+y+z)=\(\frac{-5}{6}\) suy ra x+y+z=\(\frac{-5}{12}\)

suy ra x+y=\(\frac{-5}{12}\)-z ; y+z=\(\frac{-5}{12}\)-x ; x+z=\(\frac{-5}{12}\)-y

Thay vào ta có : \(\frac{-5}{12}\)-z=\(\frac{-7}{6}\) suy ra z= \(\frac{3}{4}\)

                          \(\frac{-5}{12}\)-x=\(\frac{1}{4}\) suy ra x=\(\frac{-2}{3}\)

                            \(\frac{-5}{12}\)-y=\(\frac{1}{12}\) suy ra y=\(\frac{-1}{2}\)

easy Hok tốt nhé b

24 tháng 11 2016

Theo đề bài, ta có:

x(x + y + z) = -5; y(x + y + z) = 9; z(x + y + z) = 5

=> (x + y + z)(x + y + z) = -5 + 9 + 5 = 9

=> (x + y + z)= 9

=> x + y + z \(\in\){3; -3}

Với x + y + z = 3, ta có:

   x = -5 : 3 = \(\frac{-5}{3}\)

   y = 9 : 3 = 3

   z = 5 : 3 = \(\frac{5}{3}\)

Với x + y + z = -3, ta có:

   x = -5 : (-3) = \(\frac{5}{3}\)

   y = 9 : (-3) = -3

   z = 5 : (-3) = \(\frac{-5}{3}\)

Vậy x = \(\frac{-5}{3}\); y = 3 ; z = \(\frac{5}{3}\) hoặc x = \(\frac{5}{3}\); y = -3 ; z = \(\frac{-5}{3}\).

8 tháng 6 2017

Cộng theo từng vế ta được:
\(\left(x+y+z\right)^2=9\)\(\Rightarrow x+y+z=\pm3\)
Nếu \(x+y+z=3\) thì \(x=-\dfrac{5}{3},y=3,z=\dfrac{5}{3}\).
Nếu \(x+y+z=-3\) thì \(x=\dfrac{5}{3},y=-3,z=-\dfrac{5}{3}\).

29 tháng 7 2017

Cộng theo từng vế ta được :

\(\left(x+y+z\right)^2=9\Rightarrow x+y+z=\pm3\)

Nếu \(x+y+z=3\)thì \(x=-\dfrac{5}{3},y=3,z=\dfrac{5}{3}\).

Nếu\(x+y+x=-3\)thì \(x=\dfrac{5}{3},y=-3,z=-\dfrac{5}{3}\).

21 tháng 7 2016

Cộng theo vế 3 dữ kiện của bài toán ta được:

\(\left(x+y+z\right)^2=36\)

<=> \(x+y+z=\pm6\)

TH1: x+y+z=6

=> x= -12:6=-2

      y = 18:6=3

    z=  30:6=5

TH2 : x+y+z =-6

 => x= -12:-6=2

    y=  18:-6=-3

  z= 30:-6=-5

Vậy các cặp số hữu tỉ (x;y;z) là : \(\left(-2;3;5\right);\left(2;-3;-5\right)\)

26 tháng 5 2017

\(x\left(x+y+z\right)=-5\left(1\right);y\left(x+y+z\right)=9\left(2\right);z\left(x+y+z\right)=5\left(3\right)\)

Cộng vế với vế của (1);(2);(3) với nhau ta được (x+y+z)2=9 =>x+y+z=-3 hoặc x+y+z=3

TH1: x+y+z=-3 

Thay x+y+z=-3 vào (1);(2) ta được x.(-3)=-5 => x=5/3; y.(-3)=9 => y=-3

x+y+z=(5/3)+(-3)+z=-3 => (5/3)+z=0 => z=-5/3

TH2: x+y+z=3

Thay x+y+z=3 vào (1);(2) ta được x.3=-5 => x=-5/3; y.3=9 => y=3

x+y+z=(-5/3)+3+z=3 => (-5/3)+z=0 => z=5/3

Vậy x=5/3;y=-3;z=-5/3 hoặc x=-5/3;y=3;z=-5/3

26 tháng 5 2017

Theo đề ra ta có:

\(\frac{-5}{x}=\frac{9}{y}=\frac{5}{z}=x+y+z=\frac{9}{x+y+z}\)(áp dụng tính chất của dãy tỉ số bằng nhau)

\(\rightarrow\left(x+y+z\right)^2=9\rightarrow\orbr{\begin{cases}x+y+z=3\\x+y+z=-3\end{cases}}\)

\(\rightarrow\orbr{\begin{cases}x=\frac{-5}{3}\\x=\frac{5}{3}\end{cases},}\orbr{\begin{cases}y=3\\y=-3\end{cases},}\orbr{\begin{cases}z=\frac{5}{3}\\z=\frac{-5}{3}\end{cases}}\)

21 tháng 10 2020

d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)

\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)

\(\Rightarrow\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)

Vậy \(x=-3\)\(y=-4\)\(z=-5\)

e) \(x\left(x+y+z\right)=-12\)\(y\left(y+z+x\right)=18\)\(z\left(z+x+y\right)=30\)

\(\Rightarrow x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=-12+18+30\)

\(\Leftrightarrow\left(x+y+z\right)^2=36\)\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)

TH1: Nếu \(x+y+z=-6\)\(\Rightarrow x=\frac{-12}{-6}=2\)\(y=\frac{18}{-6}=-3\)\(z=\frac{30}{-6}=-5\)

TH2: Nếu \(x+y+z=6\)\(\Rightarrow x=\frac{-12}{6}=-2\)\(y=\frac{18}{6}=3\)\(z=\frac{30}{6}=5\)

Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn là \(\left(2;-3;-5\right)\)\(\left(-2;3;5\right)\)