Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhân ba vế của đẳng thức, ta được :
ab . bc . ca = \(\frac{3}{5}.\frac{4}{5}.\frac{3}{4}\)
( a.b.c )2 = \(\left(\frac{3}{5}\right)^2\)
a.b.c = \(\frac{3}{5}\)
\(\Rightarrow c=1;b=\frac{4}{5};a=\frac{3}{4}\)
ab = 3/5 (1)
bc = 4/5 (2)
ca = 3/4 (3)
Nhân (1),(2),(3) vế với vế ta có:
a2b2c2 = 3/5.4/5.3/4
(abc)2 = 9/25
=> abc = 3/5 (4) hoặc abc = -3/5 (5)
Từ (1) và (4) suy ra 3/5.c = 3/5 => c = 1
Từ (2) và (4) suy ra 4/5.a = 3/5 => a = 3/4
Từ (3) và (4) suy ra 3/4.b = 3/5 => b = 4/5
Tương tự, từ (1) và (5), từ (2) và (5), từ (3) và (5) lần lượt suy ra: c = -1, a = -3/4, b = -4/5
Vậy \(\hept{\begin{cases}a=\frac{3}{4}\\b=\frac{4}{5}\\c=1\end{cases}}\) hoặc \(\hept{\begin{cases}a=\frac{-3}{4}\\b=\frac{-4}{5}\\c=-1\end{cases}}\)
a) a.b= 3/5; b.c=4/5; a.c=3/4
b) a.( a+b+c)=-12
b.( a+b+c )=18
c.( a+b+c)= 30
c) a.b=c
b.c=4.a
a.c=9.b
a,a.b/b.c=a/c=3/4
a/c.a.c=a.a=3/4*3/4
=>a=3/4hoặc-3/4
rồi suy a,b,c
a.( a+b+c)=-12=A
b.( a+b+c )=18=B
c.( a+b+c)= 30=C
A+B+C=(a+b+c)(a+b+c)=36
a+b+c=6hoặc -6
ghép vào A,B,C suy ra a,b,c
c,a.b.b.c.a.c=c.4.a.9.b
a.b.c=4.9=36
a.b=c
=>a.b.c=c.c=36
=>c=6 hoặc -6
=>a,b,c
hồi ôn thi học sinh giỏi chị gặp bài này...đam bảo đúng
a) ab=3/5; bc=4/5; ca=3/4
=> (abc)2 = (3/4).(4/5).(3/4)=9/25
=>abc=3/5
Ta có: abc=3/5
ab=3/5
=> c=1
Ta có: abc=3/5
bc=4/5
=> a=3/4
Ta có: abc=3/5
ca=3/4
=> b=4/5
Vậy a=3/4; b=4/5; c=1
a. ab=3/5;bc=4/5;ca=3/4
=>(abc)^2=9/25
=>abc=3/5
=> c=1;a=3/4;b=4/5
b. a(a+b+c)=-12; b(a+b+c)=18; c(a+b+c)=30
=>(a+b+c)^2=36
=>a+b+c=6
=> a=-2;b=3;c=5
Ta có:
\(ab.bc=\frac{3}{5}.\frac{4}{5}\Rightarrow a.b^2.c=\frac{12}{25}\Rightarrow\frac{a.b^2.c}{ca}=\frac{12}{25}:\frac{3}{4}\Rightarrow b^2=\frac{16}{25}\Rightarrow b=\frac{4}{5}\)
Thay \(b=\frac{4}{5}\)ta có:
\(ab=\frac{3}{5}\Rightarrow a=\frac{3}{5}:b=\frac{3}{5}:\frac{4}{5}=\frac{3}{4}\)
\(bc=\frac{4}{5}\Rightarrow c=\frac{4}{5}:b=\frac{4}{5}:\frac{4}{5}=1\)
Vậy \(a=\frac{3}{4},b=\frac{4}{5},c=1\)
1) ab=2 (I); bc=3 (II); ca=54 (III)
Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 324 ⇒ abc = ±18
(II) ⇒ a= ±6 ; (I) ⇒ b= ±1/3 ; (II) ⇒ c= ±9
2) ab=5/3 (I); bc=4/5 (II); ca=3/4 (III)
Lấy (I).(II).(III) ⇒ a2 . b2 . c2 = 1 ⇒ abc = ±1
(II) ⇒ a= ±5/4 ; (I) ⇒ b= ±4/3 ; (II) ⇒ c= ±3/5
3) a(a+b+c)= -12 (I)
b(a+b+c)= 18 (II)
c(a+b+c)= 30 (III)
Lấy (I)+(II)+(III) ⇒ (a+b+c)2 = 36 ⇒ a+b+c = ±6
TH1 : a=6 ⇒ a= -12/6 = -2 ; b= 18/6 = 3 ; c= 30/6 = 5
TH2 : a=-6 ⇒ a= -12/-6 = 2 ; b= 18/-6 = -3 ; c= 30/-6 = -5
a, Nhân ba vế lại ta được:
ab.bc.ca = 3/5.4/5.3/4
(abc)2 = \(\left(\pm1\right)^2\)
=> abc = 1 hoặc abc = -1
Với abc = 1 => \(\hept{\begin{cases}\frac{3}{5}c=1\\\frac{4}{5}a=1\\\frac{3}{4}b=1\end{cases}\Rightarrow\hept{\begin{cases}c=\frac{5}{3}\\a=\frac{5}{4}\\b=\frac{4}{3}\end{cases}}}\)
Với abc = -1 => \(\hept{\begin{cases}\frac{3}{5}c=-1\\\frac{4}{5}a=-1\\\frac{3}{4}b=-1\end{cases}\Rightarrow\hept{\begin{cases}c=-\frac{5}{3}\\a=\frac{-5}{4}\\b=-\frac{4}{3}\end{cases}}}\)
b, cộng 3 vế lại ta được:
a(a+b+c)+b(a+b+c)+c(a+b+c)=-12+18+30
(a+b+c)2=36
(a+b+c)2=\(\left(\pm6\right)^2\)
=> a+b+c = 6 hoặc a+b+c = -6
Với a+b+c=6 => \(\hept{\begin{cases}6a=-12\\6b=18\\6c=30\end{cases}\Rightarrow\hept{\begin{cases}a=-2\\b=3\\c=5\end{cases}}}\)
Với a+b+c=-6 => \(\hept{\begin{cases}-6a=-12\\-6b=18\\-6c=30\end{cases}\Rightarrow\hept{\begin{cases}a=2\\b=-3\\c=-5\end{cases}}}\)
Bài làm:
Ta có: \(ab.bc=\frac{3}{5}.\frac{4}{5}\Leftrightarrow ab^2c=\frac{12}{25}\)
\(\Rightarrow ab^2c\div ac=\frac{12}{25}\div\frac{3}{4}\)
\(\Rightarrow b^2=\frac{16}{25}\Leftrightarrow b=\pm\frac{4}{5}\)
Thay vào ta tính được a và b
b,c tương tự a
a, \(ab.bc.ca=\frac{3}{4}.\frac{4}{5}.\frac{3}{4}\)
\(\left(a.b.c\right)^2=\left(\frac{3}{5}\right)^2\)
\(a.b.c=\frac{3}{5}\)
\(\Rightarrow b=\frac{4}{5};c=1;a=\frac{3}{4}\)
b, \(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=-12+18+30\)
\(\Rightarrow\left(a+b+c\right).\left(a+b+c\right)=36\)
\(\Rightarrow\left(a+b+c\right)^2=36\)
\(\hept{\begin{cases}a+b+c=6\\a+b+c=-6\end{cases}}\)
Nếu a + b + c = 6 \(\Rightarrow\)a = - 2 b = 3 c=5
Nếu a + b + c = - 6 \(\Rightarrow\)a = 2 , b = -3 c = -5
c,ab=c => a=c/b (1)
bc=4a => a=(bc)/4 (2)
Từ (1) và (2) => c/b = (bc)/4
<=> 1/b = b/4 <=> b^2 =4 <=> b = 2 hoặc b = -2
(*) Với b=2 thì
(1) => a=c/2 <=> c=2a:
ac=9b nên 2a^2 = 18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ Với a=3 thì c= 2*3 = 6 (thỏa)
_Với a=-3 thì c= 2*-3 =-6 (thỏa)
(*) Với b=-2 thì
(1) => a=c/-2 <=> c=-2a
Ta có: ac=9b nên -2a^2 = -18 <=> a^2 = 9 <=> a=3 hoặc a=-3
_ Với a=3 thì c= -2*3 = -6 (thỏa)
_Với a=-3 thì c= -2*-3 =6 (thỏa)
Vậy S= { (3;2;6) ; (-3;2;-6) ; (3;-2;-6) ; (-3;-2;6) }
Ta có ab.bc.ca = 0,36
=> (abc)2 = 0,36
=> \(\orbr{\begin{cases}abc=0,6\\abc=-0,6\end{cases}}\)
Lại có ab.bc = 12/25
=> \(\orbr{\begin{cases}b=\frac{12}{25}:0,6\\b=\frac{12}{25}:\left(-0,6\right)\end{cases}}\Rightarrow\orbr{\begin{cases}b=\frac{4}{5}\\b=-\frac{4}{5}\end{cases}}\)
Lại có bc.ca = 3/5
=> \(\orbr{\begin{cases}c=\frac{3}{5}:0,6\\c=\frac{3}{5}:\left(-0,6\right)\end{cases}}\Rightarrow\orbr{\begin{cases}c=1\\c=-1\end{cases}}\)
Lại có ab.ca = 9/20
=> \(\orbr{\begin{cases}a=\frac{9}{20}:0,6\\a=\frac{9}{20}:\left(-0,6\right)\end{cases}}\Rightarrow\orbr{\begin{cases}a=\frac{3}{4}\\a=-\frac{3}{4}\end{cases}}\)
Vì ab > 0 ; bc > 0 ; ca > 0
=> a;b;c cùng dấu
Vậy các cặp a;b;c thỏa mãn là \(\left(\frac{4}{5};1;\frac{3}{4}\right);\left(-\frac{4}{5};-1;-\frac{3}{4}\right)\)
\(ab=\frac{3}{5}\)(1) \(bc=\frac{4}{5}\Rightarrow b=\frac{4}{5c}\)(2) \(ca=\frac{3}{4}\Rightarrow c=\frac{3}{4a}\)(3)
Thay (2) vào (1): \(a.\frac{4}{5c}=\frac{3}{5}\Leftrightarrow4a=3c\)
Tiếp tục thay (3) vào biểu thức vừa tính: \(\Rightarrow4a=3.\frac{3}{4a}\Leftrightarrow a^2=\frac{9}{16}\Leftrightarrow a=\pm\frac{3}{4}\)
\(\Rightarrow\hept{\begin{cases}b=\pm\frac{4}{5}\\c=\pm1\end{cases}}\)
Vậy nhận 2 nghiệm là (3/4;4/5;1), (-3/4;-4/5;-1)