Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để 1x57y chia hết ở 5 thì y = 0 hoặc 5. Ta có các trường hợp:
TH1:-Với y = 0. Ta có số 1x570 chia hét cho 9
=> ( 1 + x + 5+ 7 + 0) chia hết cho 9
=> ( 13 + x ) chia hết cho 9
=> x = 5
TH2:
-Với y = 5. Ta có số 1x575 chia hét cho 9
=> ( 1 + x + 5+ 7 + 5) chia hết cho 9
=> ( 18 + x ) chia hết cho 9
=> x = 0, 9
abcabc + abcabc
Mk sẽ xét 1 cái nha vì hai số đều giống nhau
\(abcabc\)
\(=abc000+abc\)
\(=abc\cdot1000+abc\cdot1\)
\(=abc\cdot\left(1000+1\right)\)
\(=abc\cdot1001\)
\(1001=7\cdot11\cdot13\)
\(\Rightarrow abc\cdot1001=abc\cdot7\cdot11\cdot13⋮\left(11;13\right)\left(đpcm\right)\)
Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) (dấu bằng xảy ra khi và chỉ khi x=y)
Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y
Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010
Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y
Nên: \(x=y=987\)
Max x+y=\(\sqrt{4\cdot987^2}=1974\)
Không viết đúng không
:v
Mình xem đáp án là 1328 với lại mình gõ nhầm;
abc, def là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .
vì 3x5y chia hết cho 2 và 5
=> y =0 =>3x50
mà 3x5y chia het cho 9
=> 3+x+5+0 chia het cho 9
=>8+x chia het cho 9
=> x=1
câu trả lời la : 3252 : 2 = 1626
3255 : 5 = 651
3159 : 9 = 351
a - b = 6 <=> a = 6 + b 4a7 và 1b5 có gạch ngang trên đầu:
4a7 <=> 400 + 10a + 7 1b5
<=> 100 + 10b + 5 (400 + 10a + 7) + (100 + 10b + 5) 512 + 10a + 10b
Thay a = 6 + b vào 512 + 60 + 10b + 10b => 572 + 20b
Chia hết cho 9 khi 5+7+2+2+b chia hết cho 9
<=> b = 2 thỏa mãn
=> a = 8 487 + 125
Đáp số: 612
là các số:
10575;15570