Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài sai ngay từ giả thiết x,y,z nguyên dương.
Rõ ràng khi đó x,y,z > 0 => \(xy+yz+zx>0\)(đẳng thức không xảy ra)
Vậy đề đúng phải là x,y,z nguyên dương thỏa mãn \(xy+yz+zx=1\)
Khi đó ta giải như sau :
\(x^2+1=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\)
\(y^2+1=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)
\(z^2+1=z^2+xy+yz+zx=\left(z+x\right)\left(z+y\right)\)
\(\Rightarrow A=\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\) là bình phương của một số nguyên.
\(b,9x^2+90x+225-\left(x-y\right)^2\)
\(=\left(3x+15\right)^2-\left(x-y\right)^2\)
\(=\left(3x+15-x+y\right)\left(3x+15+x-y\right)\)
\(=\left(2x+y+15\right)\left(4x-y+15\right)\)
Bài 1
1) 4x - x2 - 4 = 0
⇔ -( x2 - 4x + 4 ) = 0
⇔ -( x - 2 )2 = 0
⇔ x - 2 = 0
⇔ x = 2
2) 4( x - 1 )2 - ( 5 - 2x )2 = 0
⇔ 22( x - 1 )2 - ( 5 - 2x )2 = 0
⇔ ( 2x - 2 )2 - ( 5 - 2x ) = 0
⇔ ( 2x - 2 - 5 + 2x )( 2x - 2 + 5 - 2x ) = 0
⇔ ( 4x - 7 ).3 = 0
⇔ 4x - 7 = 0
⇔ x = 7/4
3) 9( x - 2 )2 - 4( 3 - x )2 = 0
⇔ 32( x - 2 )2 - 22( x - 3 )2 = 0
⇔ ( 3x - 6 )2 - ( 2x - 6 )2 = 0
⇔ ( 3x - 6 - 2x + 6 )( 3x - 6 + 2x - 6 ) = 0
⇔ x( 5x - 12 ) = 0
⇔ x = 0 hoặc 5x - 12 = 0
⇔ x = 0 hoặc x = 12/5
4) x2 - 6x + 5 = 0
⇔ x2 - 5x - x + 5 = 0
⇔ x( x - 5 ) - ( x - 5 ) = 0
⇔ ( x - 5 )( x - 1 ) = 0
⇔ x - 5 = 0 hoặc x - 1 = 0
⇔ x = 5 hoặc x = 1
Bài 2.
1) x2 - z2 + y2 - 2xy
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - z2
= ( x - y - z )( x - y + z )
2) a3 - ay - a2x + xy
= ( a3 - a2x ) - ( ay - xy )
= a2( a - x ) - y( a - x )
= ( a - x )( a2 - y )
3) 2xy + 3z + 6y + xz
= ( 2xy + 6y ) + ( xz + 3z )
= 2y( x + 3 ) + z( x + 3 )
= ( x + 3 )( 2y + z )
4) x2 + 2xz + 2xy + 4yz
= ( x2 + 2xy ) + ( 2xz + 4yz )
= x( x + 2y ) + 2z( x + 2y )
= ( x + 2y )( x + 2z )
5) ( x + y + z )3 - x3 - y3 - z3
= x3 + y3 + z3 + 3( x + y )( y + z )( x + z ) - x3 - y3 - z3
= 3( x + y )( y + z )( x + z )