K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2015

Chia đa thức ra rồi cho phần còn dư ra (chưa tham số và biến bậc 2, bậc 1 và hệ số tự do) có hệ số bằng 0.

13 tháng 12 2017

Có: (x4-x3+6x2-x+a):(x2-x+5)=x2+1(dư a - 5)          Vậy để đa thức 1 chia hết cho đa thức 2 thì x-5=0 hay x=5

13 tháng 12 2017

Có 2x3-3x2+x+a chia cho x + 2 bằng 2x2-7x+15 (dư a-30)  

Vậy để đa thức 1 chia hết cho đa thức 2 thì a-30=0 hay a=30

23 tháng 12 2019

Bạn ơi a,b,c thỏa mãn 3 trường hợp luôn hay sao ah?

23 tháng 10 2017

a)

\(A=\dfrac{x^2\left(x^2+5x-3\right)-2x\left(x^2+5x-3\right)-4\left(x^2+5x-3\right)+14x-12+ax+y\left(b\right)}{x^2+5x-3}\)\(A=x^2-2x-4+\dfrac{14x-12+ax+y\left(b\right)}{x^2+5x-3}\)

nếu b=y

\(\left\{{}\begin{matrix}a=-14\\b=12\end{matrix}\right.\)

nếu b khác y

a =-14 ; y =12 với mọi b

AH
Akai Haruma
Giáo viên
8 tháng 9 2019

Bài 1:

Ta có:

\(6x^4-7x^3+ax^2+3x+2\)

\(=6x^2(x^2-x+2)-x(x^2-x+2)+(a-13)(x^2-x+2)+(a-8)x+(28-2a)\)

\(=(x^2-x+2)(6x^2-x+a-13)+(a-8)x+(28-2a)\)

Từ đây ta dễ dàng thấy đa thức $6x^4-7x^3+ax^2+3x+2$ khi chia cho $x^2-x+2$ có dư là $(a-8)x+(28-2a)$

Để phép chia này là chia hết thì $(a-8)x+(28-2a)=0$, với mọi $x$

$\Rightarrow \left\{\begin{matrix}

a-8=0\\

28-2a=0\end{matrix}\right.$ (vô lý)

Vậy không tồn tại $a$ thỏa mãn đề.

AH
Akai Haruma
Giáo viên
8 tháng 9 2019

Bài 2:

Áp dụng định lý Bê-du về phép chia đa thức, ta thấy $f(x)$ chia hết cho $x+2$

$\Rightarrow f(-2)=0$

$\Leftrightarrow 32+4a-2b+c=0(1)$

Mặt khác, theo đề ta có:

$f(x)=2x^4+ax^2+bx+c=Q(x)(x^2-1)+x$ với $Q(x)$ là đa thức thương khi chia $f(x)$ cho $x^2-1$

Cho $x=1$:$\Rightarrow 2+a+b+c=1(2)$

Cho $x=-1\Rightarrow 2+a-b+c=-1(3)$

Từ $(1);(2);(3)\Rightarrow a=\frac{-28}{3}; b=1; c=\frac{22}{3}$

a: \(\Leftrightarrow10x^2-15x+8x-12+a+12⋮2x-3\)

=>a+12=0

hay a=-12

b: \(\Leftrightarrow2x^2+8x+\left(a-8\right)x+4a-32-4a+28⋮x+4\)

=>-4a+28=0

=>a=7

c: \(\Leftrightarrow2x^3-2x-x^2+1+\left(a+2\right)x+b-1⋮x^2-1\)

=>a+2=0 và b-1=0

=>a=-2 và b=1