Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do: |6 - 2x| \(\ge\)0 nên A = |6 - 2x| - 5 \(\ge\)0 - 5 = -5
Dấu"=" xảy ra khi: |6 - 2x| = 0 => x = 3
Vậy GTNN của A là -5 khi x = 3
b) Ta có: |x + 1|\(\ge\)0 hay - |x + 1|\(\le\)0 nên B = 3 - |x + 1| \(\le\)3 - 0 = 3
Dấu "=" xảy ra khi: |x + 1| = 0 => x = -1
Vậy GTLN của B là 3 khi x = - 1
c) Ta có: (x + 1)2 \(\ge\)0 nên - (x + 1)2 \(\le\)0 (1)
|2 - y|\(\ge\)0 nên -|2 - y| \(\le\)0 (2)
Từ (1) và (2) => C = -(x + 1)2 - |2 - y| + 11 \(\le\)11
Dấu "=" xảy ra khi: (x + 1)2 = 0 và |2 - y| = 0 => x = -1 và y = 2
Vậy GTLN của C là 11 khi x = -1 và y = 2
d) Do: (x + 5)2 \(\ge\)0 và (2y - 6)2 \(\ge\)0
Nên: D = (x + 5)2 + (2y - 6)2 + 1 \(\ge\)1
Dấu "=" xảy ra khi: (x + 5)2 = 0 và (2y - 6)2 = 0 => x = -5 và y = 3
Vậy GTNN của D là 1 khi x = -5 và y = 3
a) A = | x - 3 | + 1
| x - 3 |\(\ge\)0
Nên | x - 3 |+1\(\ge\)1
Dấu = xảy ra khi x-3=0 hay x=3
Vậy GTNN của A=1 khi x=3
b ) B = | 6 - 2x | - 5
| 6 - 2x |\(\ge\)0
Nên |6-2x|-5\(\ge\)-5
Dấu = xảy ra khi 6-2x=0 hay x=3
Vậy GTNN của B=-5 khi x=3
c ) C = - ( x + 1 ) 2 - |2y - y | + 11
Vì ( x + 1 ) 2\(\ge\)0
Nên -( x + 1 ) 2\(\le\)0
Vì |2y - y |\(\ge\)0
Nên - |2y - y |\(\le\)0
C = - ( x + 1 ) 2 - |2y - y | + 11 \(\le\)11
Dấu = xảy ra khi x+1=0 và 2y-y=0 hay x=-1;y=0
Vậy GTLN của C=11 khi x=-1 và y=0
d ) D = ( x + 5 )2 + (2y - 6 )2 + 1
Vì ( x + 5 )2 \(\ge\)0
(2y - 6 )2 \(\ge\)0
D = ( x + 5 )2 + (2y - 6 )2 + 1\(\ge\)1
Vậy dấu = xảy ra khi x+5=0;2y-6=0 hay x=-5;y=3
Vậy GTNN của D=1 khi x=-5;y=3
Vì | x -3 | > hoặc = 0
Suy ra : |x-3|+50 >hoặc =50
Vì A nhỏ nhất suy ra | x-3 | +50 =50
Suy ra x-3 =0
Suy ra x=3
Vậy GTNN của A = 50 khi x=3
tương tự baì đẳng trên mình vừa làm đấy
|A| <= 0 với mọi A
thì -|A| <= 0 vứi mọi A
tương tự với bình phương một số
Trả lời:
1, A = | x - 3 | + 10
Vì \(\left|x-3\right|\ge0\forall x\)
nên \(\left|x-3\right|+10\ge10\forall x\)
Dấu = xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của A = 10 khi x = 3
B = -7 + ( x + 1 )2
Vì \(\left(x+1\right)^2\ge0\forall x\)
nên \(-7+\left(x+1\right)^2\ge-7\forall x\)
Dấu = xảy ra khi x + 1 = 0 <=> x = -1
Vậy GTNN của B = -7 khi x = -1
2, C = -3 - | x + 2 |
Vì \(\left|x+2\right|\ge0\forall x\)
=> \(-\left|x+2\right|\le0\forall x\)
=> \(-3-\left|x+2\right|\le-3\forall x\)
Dấu = xảy ra khi x + 2 = 0 <=> x = -2
Vậy GTLN của C = -3 khi x = -2
D = 15 - ( x - 2 )2
VÌ \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2\le0\forall x\)
=> \(15-\left(x-2\right)^2\le15\forall x\)
Dấu = xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 15 khi x = 2
a, Ta có: \(\left|7-x\right|\ge0\Rightarrow-\left|7-x\right|\le0\Rightarrow A=-100-\left|7-x\right|\le-100\)
Dấu "=" xảy ra khi |7 - x| = 0 => x = 7
Vậy MaxA = -100 khi x = 7
b, Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left|2-y\right|\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\Rightarrow-\left(x+1\right)^2-\left|2-y\right|\le0\)
\(\Rightarrow B=-\left(x+1\right)^2-\left|2-y\right|+11\le11\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}-\left(x+1\right)^2=0\\\left|2-y\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy MaxB = 11 khi x = -1 và y = 2
c, Ta có: \(\hept{\begin{cases}\left(x+5\right)^2\ge0\\\left(2y-6\right)^2\ge0\end{cases}}\Rightarrow\left(x+5\right)^2+\left(2y-6\right)^2\ge0\)
\(\Rightarrow C=\left(x+5\right)^2+\left(2y-6\right)^2+1\ge1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+5\right)^2=0\\\left(2y-6\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-5\\y=3\end{cases}}\)
Vậy MinC = 1 khi x = -5 và y = 3