K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2023

\(x^2=\left(y+1\right)^2+12\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+1\right)=12\)

Do \(x,y\in N\)* nên \(x-y-1;x+y+1\inƯ\left(12\right)\) và \(x+y+1\ge1+1+1=3\)

TH1: \(x+y+1=12\Rightarrow x-y-1=1\)

\(\Leftrightarrow x=\dfrac{13}{2};y=\dfrac{9}{2}\) (ktm)

TH2:\(x+y+1=6;x-y-1=2\)

\(\Leftrightarrow x=4;y=1\) (thỏa mãn)

TH3: \(x+y+1=4;x-y-1=3\)

\(\Leftrightarrow x=\dfrac{7}{2};y=-\dfrac{1}{2}\) (ktm)

TH4: \(x+y+1=3;x-y-1=4\) (ktm)

Vậy \(x=4;y=1\)

9 tháng 8 2023

\(x^2=y^2+2y+13\)

\(\Leftrightarrow x^2=y^2+2y+1+12\)

\(\Leftrightarrow x^2=\left(y+1\right)^2+12\)

\(\Leftrightarrow x^2-\left(y+1\right)^2=12\)

\(\Leftrightarrow\left(x-y-1\right)\left(x+y+1\right)=12\)

Vi x;y nguyên dương

\(\Rightarrow\left(x-y-1\right);\left(x+y+1\right)\in B\left(12\right)=\left\{1;2;3;4;6;12\right\}\left(x-y-1< x+y+1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+1\in\left\{12;6;4\right\}\\x-y-1\in\left\{1;2;3\right\}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\in\left\{\dfrac{13}{2};4;\dfrac{7}{2}\right\}\\y\in\left\{\dfrac{9}{2};1;-\dfrac{1}{2}\right\}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\) (x;y nguyên dương)

Vậy \(\left(x;y\right)\in\left(4;1\right)\) thỏa mãn đề bài

27 tháng 6 2015

\(VP=3-\left(y^2-2y+1\right)=3-\left(y-1\right)^2\le3\)(Dấu "=" xảy ra khi \(y=1\)

Nhìn đề bài ta đoán dạng bất đẳng thức, có \(VP\le3\), giờ ta chứng minh \(VT\ge3\)

Thật vậy, ta có

 \(\frac{4x^2-4x+7}{x^2+1}-3=\frac{4x^2-4x+7-3\left(x^2+1\right)}{x^2+1}=\frac{x^2-4x+4}{x^2+1}\)

\(=\frac{\left(x-2\right)^2}{x^2+1}\ge0\)

Do đó; \(\frac{4x^2-4x+7}{x^2+1}\ge3\)(dấu "=" xảy ra khi \(x=2\))

\(\Rightarrow\frac{4x^2-4x+7}{x^2+1}\ge3\ge2+2y-y^2\)

\(VT=VP\Leftrightarrow VT=3;VP=3\)

\(\Leftrightarrow x=3;y=1\)

 

 

9 tháng 10 2016

Gọi số cần tìm là A

Ta xét các trường hợp

voi x, y lẻ thì tử lẻ mẫu chẵn nên A không phải số nguyên vì tử không chia hết cho mẫu

voi ít nhất x, y là chẵn thì A luôn là số chẵn nếu tử chia hết cho mẫu

Ma số nguyên tố chẵn duy nhất là 2 nên A = 2

ta thấy x = 1 không phải là số cần tìm nên ta xét x >= 2

Ta có x2y2 = 2x2 + 2y2

<=> x2(y2 - 2) = 2y2

<=> x2 = (2y2)/(y2 - 2) \(\ge\) 4

<=> y2 >= 2y2 - 4 

<=> y<= 4

vi y nguyên dương nên y = 1 hoặc 2 thế vào ta tìm được giá trị (x; y) = (2;2)

Gọi số cần tìm là A

Ta xét các trường hợp

voi x, y lẻ thì tử lẻ mẫu chẵn nên A không phải số nguyên vì tử không chia hết cho mẫu

voi ít nhất x, y là chẵn thì A luôn là số chẵn nếu tử chia hết cho mẫu

Ma số nguyên tố chẵn duy nhất là 2 nên A = 2

ta thấy x = 1 không phải là số cần tìm nên ta xét x >= 2

Ta có x2y2 = 2x2 + 2y2

<=> x2(y2 - 2) = 2y2

<=> x2 = (2y2)/(y2 - 2) ≥ 4

<=> y2 >= 2y2 - 4 

<=> y2 <= 4

vi y nguyên dương nên y = 1 hoặc 2 thế vào ta tìm được giá trị (x; y) = (2;2)

1 tháng 9 2017

 Biến đổi bt tương đương : (x^2-1)/2 =y^2 
Ta có: vì x,y là số nguyên dương nên 
+) x>y và x phải là số lẽ. 
Từ đó đặt x=2k+1 (k nguyên dương); 
Biểu thức tương đương 2*k*(k+1)=y^2 (*); 
Để ý rằng: 
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là : 
{1,y, y^2} ; 
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1; 
=>x=3. 
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).

22 tháng 2 2018

bạn ơi câu 1 phương trình có đúng không vậy?

22 tháng 2 2018

Câu 1 : Cho \(\left(x_0;y_0\right)\)là nghiệm nguyên dương của phương trình 1003x+2y=2008. Biểu thức A= \(x_0^2+y_0^2\)có giá trị bằng?

22 tháng 9 2017

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).