Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne1\)
Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)
\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)
\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)
Để B nguyên thì \(3⋮\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)
mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)
\(\Leftrightarrow x-1\in\left\{1;9\right\}\)
hay \(x\in\left\{2;10\right\}\) (nhận)
Vậy: \(x\in\left\{2;10\right\}\)
\(C=\dfrac{\left(x^2+3x\right)\left(x^2+2\right)-2}{x^2+2}=x^2+3x-\dfrac{2}{x^2+2}\)
\(C\in Z\Leftrightarrow2⋮\left(x^2+2\right)\)
\(\Leftrightarrow x^2+2=2\Rightarrow x=0\)
Ta có:\(3x^3-4x^2+x-1=\left(x-4\right)\left(3x^2+8x+33\right)+131\)
Để A nguyên => x-4 phải là ước của 131.Mà ước của 131=-1;1;-131;131
\(x-4=1\Rightarrow x=1+4=5\)
\(x-4=-1\Rightarrow x=-1+4=3\)
\(x-4=131\Rightarrow x=131+4=135\)
\(x-4=-131\Rightarrow x=-131+4=-127\)
Thử lại,ta có các giá trị x thỏa mãn.
Vậy các giá trị x cần tìm là:3;5;135;-127
=[3x(x2-16)+44(x2-16)+44.16+x-4+3]/(x-4)
=3x(x+4)+44(x+4)+1+(44.16+3)/(x-4)
để là giá trị nguyên thì 44.16+3=707 chia hết cho x-4
vậy x-4 phải là ước của 707
707=7.101 => x-4=7 hoặc x-4=101
=>x =11 hoăc x=105