Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ĐKXĐ:n \(\ne\)1
\(\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=3+\frac{7}{n-1}\)
=>n-1 thuộc Ư(7)={1;-1;7;-7}
=>n ={2;0;8-6}
=>\(\frac{6n-2-1}{3n-1}\)=>\(\frac{2\left(3n-1\right)-1}{3n-1}\)=2\(\frac{1}{3n-1}\)
=>để (6n-1)/(3n-1) nguyên thì 1/3n-1 nguyên
=>1 chia hết cho 3n-1
=>3n-1 thuộc 1,-1
ta có : 6n-3 / 3n+1
= 6n+2-5 / 3n+1
= 6n+2 / 3n+1 - 5/3n+1
= 2 - 5/3n+1
Vì 2 là số nguyên nên để 6n-3/3n+1 là số nguyên thì 5/3n+1 phải là số nguyên
Để 5/3n+1 là số nguyên thì 5 chia hết cho 3n+1
=> 3n + 1 thuộc Ư(5)
mà Ư(5) = { -1 ; 1 ; -5 ; 5 }
=> 3n+1 thuộc { -1 ; 1 ; -5 ; 5 }
=> 3n thuộc { -2 ; 0 ; -6 ; 4 }
vì 3n chia hết cho 3 với mọi số nguyên n
=> 3n thuộc { 0 ; -6 }
=> n thuộc { 0 ; -2 }
ta có bảng sau
n | 0 | -2 |
6n-3 | -3 | -15 |
3n+1 | 1 | -5 |
6n3/3n+1 | -3/1=-3 thuộc Z ( thỏa mãn | -15/-5=3 thuộc Z ( thỏa mãn ) |
Vậy tập hợp giá trị n thỏa mãn là { 0 ; -2 }
Để \(\frac{3n+9}{n-4}\)thì tử phải chia hết cho mẫu hay mẫu phải thuộc ước của từ.Ta tìm điều kiện thích hợp :
\(3n+9⋮n-4\Leftrightarrow3n-12+21⋮n-4\)
\(\Rightarrow3\left(n-4\right)+21⋮n-4\)
\(3\left(n-4\right)⋮n-4\Rightarrow21⋮n-4\)
\(\Leftrightarrow n-4\inƯ\left(21\right)=\left\{1,3,7,21,-1,-3,-7,-21\right\}\)
Rồi bạn lập bảng rồi tính giá trị ra
Tương tự câu b
\(6n+5=6n-1+6⋮6n-1\)
\(6n-1⋮6n-1\Rightarrow6⋮6n-1\)
a ) Để 3n + 9 / n -4 là số nguyên thì 3n + 9 chia hết cho n - 4
hay 3n - 4 + 13 chia hết cho n - 4
nên 13 chia hết cho n - 4 ( vì 3n - 4 chia hết cho n - 4 )
do đó n - 4 thuộc Ư( 13) = { -13;-1;1;13}
hay n thuộc { -9;3;5;17}
Vậy n thuộc { -9;3;5;17}
b) Để 6n + 5 / 6n - 1 là số nguyên thì 6n + 5 chia hết cho 6n - 1
hay 6n -1 + 6 chia hết cho 6n - 1
nên 6 chia hết cho 6n - 1 ( 6n - 1 chia hết cho 6n - 1)
do đó 6n - 1 thuộc Ư(6) = { -6;-3;-2;-1;1;2;3;6}
xét các trường hợp được n = 0
Vậy n = 0
Đặt \(A=\frac{6n-3}{3n+1}=\frac{\left(6n+2\right)-2-3}{3n+1}=\frac{2.\left(3n+1\right)-5}{3n+1}\)
\(\Rightarrow A=\frac{2.\left(3n+1\right)}{3n+1}-\frac{5}{3n+1}=2-\frac{5}{3n+1}\)
\(A\in Z\Leftrightarrow\frac{5}{3n+1}\in Z\Leftrightarrow5⋮\left(3n+1\right)\Leftrightarrow\left(3n+1\right)\inƯ\left(5\right)\)
=> 3n + 1 \(\in\){1;-1;5;-5}
Ta có bảng :
3n+1 | 1 | -1 | 5 | -5 |
n | 0 | \(-\frac{2}{3}\) | \(\frac{4}{3}\) | -2 |
Mà \(n\in Z\)=>\(n\in\){0;-2} để phân số \(\frac{6n-3}{3n+1}\in Z\)
để \(\frac{6n-3}{3n+1}\)là số nguyên thì 6n-3\(⋮\)3n-1
ta có \(\orbr{\begin{cases}6n-3⋮3n+1\\3n+1⋮3n+1\end{cases}}\Rightarrow\orbr{\begin{cases}6n-3⋮3n+1\\2\left(3n+1\right)⋮3n+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}6n-3⋮3n+1\\6n+2⋮3n+1\end{cases}}\)
\(\Rightarrow\left(6n+2\right)-\left(6n-3\right)\)\(⋮3n+1\)
\(5⋮3n+1\)
=>3n+1\(\in\)Ư(5)={-1,-5,1,5}
ta co bang sau
...
a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê
<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}
<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}
Bạn tự tính giá trị với mỗi n
b) Tương tự
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
Nếu n-1=-5 => n=-4
Nếu n-1=-1 => n=0
Nếu n-1=1 => n=2
Nếu n-1=5 => n=6
Vậy n thuộc {-4;0;2;6}
:D
Do A có giá trị nguyên
\(\Rightarrow3n+2⋮n-1^{\left(1\right)}\)
Mà \(n-1⋮n-1\)
\(\Rightarrow3\left(n-1\right)⋮n-1^{\left(2\right)}\)
Từ (1) và (2)
\(\Rightarrow3n+2-3\left(n-1\right)⋮n-1\)
\(\Rightarrow3n+2-3n+3⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\inƯ\left(5\right)=\left\{-1;-5;5;1\right\}\)
Xét \(n-1=-1\Rightarrow n=-4\)
\(n-1=-5\Rightarrow n=0\)
\(n-1=5\Rightarrow n=6\)
\(n-1=1\Rightarrow n=2\)
Vậy ...
A = \(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)
Để A có giá trị nguyên <=> n - 1 \(\in\)Ư(5) = {1;-1;5;-5}
Ta có: n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
n - 1 = 5 => n = 6
n - 1 = -5 => n = -4
Vậy n = {2;0;6;-4}
Mình sẽ làm chi tiết như sau nếu bạn ko hiểu thì tùy
\(C=\frac{6n-1}{3n+2}=\frac{\left(6n+4\right)-5}{3n+2}\)
Để C là số nguyên thì \(3n+2\inƯ\left(-5\right)\)
\(\Rightarrow3n+2=-5;3n+2=5;3n+2=1;3n+2=-1\)
Giải từng trường hợp ra thì sẽ có n thôi nhé