K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2016

2m + 2n = 2m+n

=> 2m = 2m+n - 2n = 2n.(2m - 1)

Dễ thấy m \(\ne0\Rightarrow2^m⋮2\)

Mà 2m - 1 chia 2 dư 1 nên \(\begin{cases}2^m=2^n\\2^m-1=1\end{cases}\)\(\Rightarrow\begin{cases}m=n\\2^m=2=2^1\end{cases}\)=> m = n = 1

Vậy m = n = 1

22 tháng 11 2016

2m - 2n = 256

=> 2n.(2m-n - 1) = 28

Dễ thấy: \(2^{m-n}-1\ne0\Rightarrow2^{m-n}\ne1\) => m - n \(\ne0\)

\(\Rightarrow2^{m-n}⋮2\)

=> 2m-n - 1 chia 2 dư 1

=> \(\begin{cases}2^n=2^8\\2^{m-n}-1=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\2^{m-n}=2=2^1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m-n=1\end{cases}\)\(\Rightarrow\begin{cases}n=8\\m=9\end{cases}\)

Vậy n = 8; m = 9

18 tháng 2 2019

b) Vì m,n nguyên dương. Mà vế phải là số dương.Nên m > n

Đặt \(m=n+k\left(k>0,k\inℤ\right)\)

Ta có: \(2^{n+k}-2^n=2^8\Leftrightarrow2^n\left(2^k-1\right)=2^8\)

\(\Rightarrow2^k-1\inƯ\left(2^8\right)\)

Do \(2^k-1\)lẻ.Mà ước của 28 chỉ có 1 là số lẻ.

Suy ra \(2^k-1=1\Leftrightarrow2^k=2\Leftrightarrow k=1\Leftrightarrow n=8\)

Suy ra \(m=k+n=1+8=9\)

Vậy n = 8 ; m = 9

18 tháng 2 2019

a)2^m-2^m*2^n+2^n-1=-1  

(2^m-1)(2^n-1)=1  

do m,n là số tự nhiên nên

2^m-1 và 2^n-1 là ước dương của 1  

hay đồng thời xảy ra 2^m-1=1 và 2^n-1=1 suy ra m=n=1

3 tháng 11 2016

\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+3}=\frac{9}{256}\)

\(\Leftrightarrow\left(\frac{1}{2}\right)^x\left[1+\left(\frac{1}{2}\right)^3\right]=\frac{9}{256}\)

\(\Leftrightarrow\left(\frac{1}{2}\right)^x\left[1+\frac{1}{8}\right]=\frac{9}{256}\)

\(\Leftrightarrow\left(\frac{1}{2}\right)^x\cdot\frac{9}{8}=\frac{9}{256}\)

\(\Leftrightarrow\left(\frac{1}{2}\right)^x=\frac{1}{32}=\left(\frac{1}{2}\right)^5\)

\(\Leftrightarrow x=5\)

20 tháng 1 2018

 Câu trả lời hay nhất:  Cách 1: 
2^m + 2^n = 2^(m + n) 
<=> 2^m = 2^(m + n) - 2^n 
<=> 2^m = 2^n(2^m - 1) 
<=> 2^(m - n) = 2^m - 1 (1) 
Vì m >= 1 nên 2^m - 1 >= 2^1 - 1 =1. Từ (1), ta suy ra 2^(m - n) > = 1 = 2^0 nên m >= n (2). 
Mặt khác, vì vai trò của m và n trong phương trình đã cho là đối xứng nên phương trình đã cho cũng tương đương với 2^(n - m) = 2^n - 1 (3) và (3) cho ta n > = m (4). 
(2) và (4) cho ta m = n và phương trình trở thành 
2^(m + 1) = 2^(2m) 
<=> m + 1 = 2m 
<=> m = 1 
Vậy phương trình có nghiệm m = n = 1. 

Cách 2: 
Trước hết, ta chứng minh rằng nếu a >= 2, b >= 2 thì a + b = ab khi và chỉ khi a = b = 2. 
Thật vậy, không mất tính tổng quát, ta có thể giả sử a <= b. 
Khi đó a + b <= 2b <= ab. Như vậy a + b = ab khi và chỉ khi a + b = 2b và 2b = ab, tức là a = b = 2. 

Trở lại phương trình, đặt a = 2^m >= 2, b = 2^n >= 2, ta có a + b = ab nên a = b = 2, tức 2^m = 2^n = 2 hay m = n = 1.

:D