K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2020

\(a,\left(2x^2+1\right)+4x>2x\left(x-2\right)\)

\(\Leftrightarrow2x^2+1+4x>2x^2-4x\)

\(\Leftrightarrow4x+4x>-1\)

\(\Leftrightarrow8x>-1\)

\(\Leftrightarrow x>-\frac{1}{8}\)

\(b,\left(4x+3\right)\left(x-1\right)< 6x^2-x+1\)

\(\Leftrightarrow4x^2-4x+3x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-x-3< 6x^2-x+1\)

\(\Leftrightarrow4x^2-6x^2< 1+3\)

\(\Leftrightarrow-2x^2< 4\)

\(\Leftrightarrow x^2>2\)

\(\Leftrightarrow x>\pm\sqrt{2}\)

31 tháng 3 2019

c) \(\left|2x-3\right|=4\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3=4\\2x-3=-4\end{cases}}\)

\(TH:2x-3=4\)

\(\Leftrightarrow2x=4+3\)

\(\Leftrightarrow2x=7\)

\(\Leftrightarrow x=\frac{7}{2}\)

\(TH:2x-3=-4\)

\(\Leftrightarrow2x=-4+3\)

\(\Leftrightarrow2x=-1\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(x\in\left\{\frac{7}{2};\frac{-1}{2}\right\}\)

31 tháng 3 2019

e) \(\frac{x-1}{x-3}>1\)

\(ĐKXĐ:x\ne3\)

\(\Leftrightarrow\frac{x-3+2}{x-3}>1\)

\(\Leftrightarrow\frac{x-3}{x-3}+\frac{2}{x-3}>1\)

\(\Leftrightarrow1+\frac{2}{x-3}>1\)

\(\Leftrightarrow\frac{2}{x-3}>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

NV
23 tháng 9 2019

a/ \(2x^2-3x+1>0\Rightarrow\left[{}\begin{matrix}x>1\\x< \frac{1}{2}\end{matrix}\right.\)

b/ \(-3x^2+2x+1< 0\Rightarrow-\frac{1}{3}< x< 1\)

c/ \(\frac{x+3}{x-2}\ge0\Rightarrow\left[{}\begin{matrix}x>2\\x\le-3\end{matrix}\right.\)

d/ \(\frac{2x+1}{x+2}\ge1\Leftrightarrow\frac{2x+1}{x+2}-1\ge0\Leftrightarrow\frac{x-1}{x+2}\ge0\Rightarrow\left[{}\begin{matrix}x\ge1\\x< -2\end{matrix}\right.\)

e/ \(\frac{\sqrt{x}+3}{2-\sqrt{x}}\le0\Rightarrow\left\{{}\begin{matrix}x\ge0\\2-\sqrt{x}< 0\end{matrix}\right.\) \(\Rightarrow x>4\)

g/\(\frac{\sqrt{x}-3}{\sqrt{x}-2}\ge0\Rightarrow\left\{{}\begin{matrix}x\ge0\\\left[{}\begin{matrix}x\ge9\\x< 4\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\ge0\\0\le x< 4\end{matrix}\right.\)

h/ \(\frac{\sqrt{x}-3}{\sqrt{x}-1}-\frac{1}{3}< 0\Rightarrow\frac{2\left(\sqrt{x}-4\right)}{3\left(\sqrt{x}-1\right)}< 0\Rightarrow1< x< 16\)

\(a,3x-2\ge x+4\)   => \(2x\ge6\)=>\(x\ge3\)

16 tháng 1 2016

a. (x-3)(x\(^2\)+6x+9)(x-1)(x\(^2\)+2x+1)(-x\(^2\)+2x+3)=0

\(\Leftrightarrow\)(x-3)(x\(^2\)+6x+9)(x-1)(x\(^2\)+2x+1)(x-3)(x+1)=0