K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

x2 + 4x = x . ( x + 4 )

để A > 0

\(\Rightarrow\orbr{\begin{cases}x\text{ và }x+4\text{ cùng dương}\\x\text{ và }x+4\text{ cùng âm}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x>0\\x+4< 0\end{cases}\Rightarrow\orbr{\begin{cases}x>0\\x< -4\end{cases}\Rightarrow}0< x< -4}\)

X không tồn tại

2 tháng 8 2017

nhầm vứt cái x không tồn tại nha

1 tháng 7 2017

Ta có : A = x2 - 4x 

=> A = x(x - 4) 

Để A nguyên dương thì x > 0 và x - 4 > 0

Vậy x  > 4 thì A nhận giá trị dương 

cám ơn 

19 tháng 7 2021

A=x2+4x=x(x+4)

để A>0 suy ra x(x+4)>0 suy ra x>0,x+4>0 hoặc x<0,x+4<0

th1: nếu x>0,x+4>0 suy ra x>0, x>-4 suy ra x>0

th2: nếu x<0,x+4<0  suy ra x<0,x<-4 suy ra x<-4

vậy x>0 hoặc x<-4

18 tháng 7 2020

a) 2x2 - 4x = 2x(x- 2)  có giá trị dương 

Th1: 2x > 0 và x - 2 > 0 

<=> x > 0 và x > 2 

<=> x > 2 

Th2: 2x < 0 và x - 2 < 0 

<=> x < 0 và x < 2 

<=> x < 0 

Vậy 2x^2 - 4x  có giá trị dương khi và chỉ khi x < 0 hoặc x > 2

b) ( 3x + 1 ) ( 4x - 3 )  dương 

Th1: 3x + 1 > 0 và 4x - 3 > 0 

<=> x > -1/3 và x > 3/4 

<=> x >3/4 

Th2: 3x + 1 < 0 và 4x - 3 < 0 

<=> x < -1/3 và x < 3/4

<=> x < -1/3

Kết luận: ...

22 tháng 12 2018

a) Dễ thấy \(x^2\)luôn dương vậy để A dương thì \(4x\ge0\)

\(\Leftrightarrow x\ge0\)

b) \(B=\left(x-3\right)\left(x+7\right)\)dương khi :

TH1: \(\hept{\begin{cases}x-3>0\\x+7>0\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>-7\end{cases}\Rightarrow}x>3}\)

TH2: \(\hept{\begin{cases}x-3< 0\\x+7< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< -7\end{cases}\Rightarrow}x< -7}\)

c) Tương tự câu b)

19 tháng 6 2017

a) Ta có ; \(x^2\ge0\forall x\in R\)

Nên A dương khi 4x \(\ge0\forall x\in R\) 

=> \(x\ge0\)

Vậy A dương khi \(x\ge0\)

21 tháng 6 2015

Dể A âm => x^2 + 4 x < 0 => x(x+4) < 0 

(+) TH1 : x > 0 và x + 4 < 0 => x > 0 và x < - 4 => 0 <x  < -4 (vô lí) (Sở dĩ xét hai trường hợp vì âm . dương < 0 hoặc duwowang. amm > 0)

(+) TH2 ngược lại

ĐỂ A âm cũng giống vậy thôi

 

8 tháng 7 2017

Dể A âm => x^2 + 4 x < 0 => x(x+4) < 0 

(+) TH1 : x > 0 và x + 4 < 0 => x > 0 và x < - 4 => 0 <x  < -4 (vô lí) (Sở dĩ xét hai trường hợp vì âm . dương < 0 hoặc duwowang. amm > 0)

(+) TH2 ngược lại

ĐỂ A âm cũng giống vậy thôi

10 tháng 6 2015

\(x^2+x=x\left(x+1\right)\)

\(x\left(x+1\right)\)dương \(\Leftrightarrow\)\(x>0\)                       Hoặc                    \(x<0\)

                                       và                                                        và 

                                   \(x+1>0\)                                      \(x+1<0\)

\(\Leftrightarrow\)                             \(x>0\)                         Hoặc                  \(x<0\) 

                                       và                                                         và

                                   \(x>-1\)                                          \(x<-1\)   

\(\Leftrightarrow\)\(x>0\) hoặc \(x<-1\)