K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2023

ĐKXĐ: \(2x-x^3>=0\)

=>\(x^3-2x< =0\)

=>\(\left[{}\begin{matrix}x< =-\sqrt{2}\\0< =x< =\sqrt{2}\end{matrix}\right.\)

\(y=\sqrt{2x-x^3}\)

=>\(y'=\dfrac{\left(2x-x^3\right)'}{2\cdot\sqrt{2x-x^3}}=\dfrac{2-3x^2}{2\cdot\sqrt{2x-x^3}}\)

Đặt y'=0

=>\(2-3x^2=0\)

=>\(3x^2=2\)

=>\(x^2=\dfrac{2}{3}\)

=>\(\left[{}\begin{matrix}x=\dfrac{\sqrt{6}}{3}\left(nhận\right)\\x=-\dfrac{\sqrt{6}}{3}\left(loại\right)\end{matrix}\right.\)

Khi \(x=\dfrac{\sqrt{6}}{3}\) thì \(y=\sqrt{2\cdot\dfrac{\sqrt{6}}{3}-\left(\dfrac{\sqrt{6}}{3}\right)^3}\)

\(=\sqrt{\dfrac{4\sqrt{6}}{9}}=\dfrac{2}{3}\cdot\sqrt{\sqrt{6}}\)

15 tháng 12 2023

https://hoc24.vn/cau-hoi/giai-cac-phuong-trinh-sau1-2x2-5x6-21-x2-2-26-5x-12-16sin2x-16cos2x-10.8680426955871

23 tháng 4 2016

Ta có : \(y'=3x^2-6x+m^2\Rightarrow y'=0\Leftrightarrow3x^2-6x+m^2=0\left(1\right)\)

Hàm số có cực trị \(\Leftrightarrow\left(1\right)\) có 2 nghiệm phân biệt \(x_1;x_2\)

                           \(\Leftrightarrow\Delta'=3\left(3-m^2\right)>0\Leftrightarrow-\sqrt{3}< m< \sqrt{3}\)

Phương trình đường thẳng d' đi qua các điểm cực trị là : \(y=\left(\frac{2}{3}m^2-2\right)x+\frac{1}{3}m^2\)

=> Các điểm cực trị là :

\(A\left(x_1;\left(\frac{2}{3}m^2-2\right)x_1+\frac{1}{3}m^2+3m\right);B\left(x_2;\left(\frac{2}{3}m^2-2\right)x_2+\frac{1}{3}m^2+3m\right);\)

Gọi I là giao điểm của hai đường thẳng d và d' :

\(\Rightarrow I\left(\frac{2m^2+6m+15}{15-4m^2};\frac{11m^2+3m-30}{15-4m^2}\right)\)

A và B đối xứng đi qua d thì trước hết \(d\perp d'\Leftrightarrow\frac{2}{3}m^2-2=-2\Leftrightarrow m=0\)

Khi đó \(I\left(1;-2\right);A\left(x_1;-2x_1\right);B\left(x_2;-2x_2\right)\Rightarrow I\) là trung điểm của AB=> A và B đối xứng nhau qua d

Vậy m = 0 là giá trị cần tìm

31 tháng 3 2017

Xét hàm số : y = x4 – 2x2 + 2

Có đạo hàm là: y’ = 4x3 – 4x = 0 ⇔ x = 0, x = 1, x = -1

Đạo hàm cấp hai: y’’ = 12x2 – 4

y’’(0) = -4 < 0 ⇒ điểm cực đại xCD =0

y’’(-1) = 8 > 0, y’’(-1) = 8 > 0

⇒ các điểm cực tiểu xCT = -1, xCT = 1


5 tháng 10 2017

Chọn D

Ta có y ' = 3 x 2 - 6 m x + m - 1

Hàm số có cực đại, cực tiểu khi và chỉ khi PT y ' = 0  có hai nghiệm phân biệt

Điều này tương đương

Hai điểm cực trị có hoành độ dương

Vậy các giá trị cần tìm của m là m >1

 

20 tháng 10 2021

Tập xác định: D=\(\left[-2\sqrt{2};2\sqrt{2}\right]\).

\(y'=1-\dfrac{x}{\sqrt{8-x^2}}\) = 0 \(\Rightarrow\) x=2.

Bảng biến thiên:

undefined

Vậy hàm số đã cho đồng biến trên khoảng (\(-2\sqrt{2}\);2), nghịch biến trên khoảng (2;\(2\sqrt{2}\)) và y=4 (tại x=2).

Tham khảo: Đồ thị:

undefined

23 tháng 4 2016

Tập xác định : \(D=\)(\(-\infty;-\sqrt{3}\)\(\cup\) [\(\sqrt{3};+\infty\))

Ta có : \(y'=2-\frac{x}{\sqrt{x^2-3}}=\frac{2\sqrt{x^2-3}-x}{\sqrt{x^2-3}}\Rightarrow y'=0\Leftrightarrow2\sqrt{x^2-3}=x\)

\(\Leftrightarrow\begin{cases}x\ge0\\4\left(x^2-3\right)=x^2\end{cases}\)\(\Leftrightarrow x=2\)

Và hàm số không có đạo hàm tại \(x=\pm\sqrt{3}\)

Bảng biến thiên

x y' y - 8 -căn 3 căn 3 2 + 8 + - + - 8 3 + 8

Hàm số đạt cực tiểu tại \(x=2;y\left(2\right)=3\)

Hàm số không có cực đại 

27 tháng 3 2016

Hàm số có cực đại, cực tiểu khi m<2. Tọa độ các điểm cực trị là :

\(A\left(0;m^2-5m+5\right);B\left(\sqrt{2-m};1-m\right);C\left(-\sqrt{2-m};1-m\right)\)

26 tháng 3 2016

- Ta có \(y'=4x^3-4m^2x;y'=0\) \(\Leftrightarrow\begin{cases}x=0\\x^2=m^2\end{cases}\) Điều kiện có 3 điểm cực trị : \(m\ne0\)

- Tọa độ 3 điểm cực trị : A (0;1); B \(\left(-m;1-m^4\right),C\left(m;1-m^4\right)\)

- Chứng minh tam giác ABC cân đỉnh A. Tọa độ trung điểm I của BC là I \(\left(0;1-m^4\right)\)

\(S_{ABC}=\frac{1}{2}AI.BC=m^4\left|m\right|=\left|m\right|^5=32\Leftrightarrow m=\pm2\left(tm\right)\)