Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
Đặt \(\left\{{}\begin{matrix}2n+2003=k^2\\3n+2005=q^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3k^2=6n+6009\\2q^2=6n+4010\end{matrix}\right.\)
\(\Leftrightarrow3k^2-2q^2=1999\)(*)
Vì 1999 là số lẻ, \(2q^2\) là số chẵn do đó \(3k^2\) phải là số lẻ
\(\Rightarrow k^2\) lẻ \(\Leftrightarrow k\) lẻ
Đặt \(k=2a+1\)
(*) \(\Leftrightarrow3\left(2a+1\right)^2-2q^2=1999\)
\(\Leftrightarrow3\left(4a^2+4a+1\right)-2q^2=1999\)
\(\Leftrightarrow12a^2+12a+3-2q^2=1999\)
\(\Leftrightarrow12a^2+12a-2q^2=1996\)
\(\Leftrightarrow2q^2=12a^2+12a-1996\)
\(\Leftrightarrow q^2=6a^2+6a-998\)
\(\Leftrightarrow q^2=6a\left(a+1\right)-998\)
Vì \(a\left(a+1\right)\) là tích 2 số liên tiếp nên \(a\left(a+1\right)⋮2\)
Do đó \(6a\left(a+1\right)=3\cdot2a\left(a+1\right)⋮4\)
Mà 998 chia 4 dư 2
Vì vậy \(6a\left(a+1\right)-998\) chia 4 dư 2
Mặt khác \(q^2\) là số chính phương nên \(q^2\) chia 4 không dư 2
Vậy không có giá trị nào của \(n\) thỏa mãn đề bài.
@Akai Haruma, @Nguyễn Việt Lâm, tth, Trần Thanh Phương,
Nguyễn Văn Đạt, svtkvtm, buithianhtho, Lê Thảo, lê thị hương giang
Giúp mk vs nha! Cảm ơn nhiều!
áp dụng bất đẳng thức côsi
a+b >= 2\(\sqrt{ab}\)
<=> (a+b).\(\sqrt{c}\)>=2.\(\sqrt{abc}\)
Mà \(\sqrt{abc}\)= (a+b) .\(\sqrt{c}\) nên a=b , \(\sqrt{c}\)= 2.\(\sqrt{c}\)
<=> c = 0 và với mọi a,b
bạn Nguyễn Anh Quân hiểu sai rồi, là \(\sqrt{\overline{abc}}\) chứ ko phải \(\sqrt{abc}\) đâu nha