K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2016

x^3-y^2=xy
=>(1) x(x^2-y)=y^2
x,y là các số tự nhiên => x^2-y là ước của y^2 => x^2 là ước của y^2 => x là ước của y => y=ax
=>(2) x^3=y(x+y)
=> x^3=ax(x+ax)=x^2.a.(a+1)
=> x=a(a+1)
Vậy x là tích 2 số tự nhiên liên tiếp; x,y có 2 chữ số.
a=1 => x=2 (loại)
a=2 => x=6 (loại)
a=3 => x=12 => y=36 (chọn)
a=4 => x=20 => y=80
(chọn)
a=5 => x=30 => y=150 (loại)
a>=5 thì y>100 => (loại)

Vậy (x,y)=(12,36) hoặc (x,y)=(20,80)

5 tháng 11 2016

Đúng 1

21 tháng 4 2021

\(x^2-xy+y+1=0\)

\(\Leftrightarrow\left(x^2-1\right)-y\left(x-1\right)+2=0\)

\(\Leftrightarrow\left(x+1-y\right)\left(x-1\right)=-2\)

\(\Rightarrow x-1;x+1-y\inƯ\left(-2\right)=\left\{\pm1;\pm2\right\}\)

x - 11-12-2
x + 1 - y2-21-1
x203-1
y1331

bảng mình xét nhầm nhé phải là như này : 

x - 11-12-2
x + 1 - y -22-11
x203-1
y5-151
19 tháng 4 2019

\(\Rightarrow2xy-6=x\)

\(\Rightarrow2xy-x=6\)

\(\Rightarrow x.\left(2y-1\right)=6\)

Vì \(x,y\in Z\Rightarrow x,2y-1\in Z\)

 mà \(6=3.2=2.3=-2.\left(-3\right)=-3.\left(-2\right)\)

Lập bảng ra rồi loại trừ tìm x,y

15 tháng 12 2023

xy+6=2(x+y)

=>xy-2x-2y+6=0

=>x(y-2)-2y+4+2=0

=>x(y-2)-2(y-2)=-2

=>(x-2)(y-2)=-2

=>\(\left(x-2\right)\cdot\left(y-2\right)=1\cdot\left(-2\right)=\left(-2\right)\cdot1=\left(-1\right)\cdot2=2\cdot\left(-1\right)\)

=>\(\left(x-2;y-2\right)\in\left\{\left(1;-2\right);\left(-2;1\right);\left(-1;2\right);\left(2;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(3;0\right);\left(0;3\right);\left(1;4\right);\left(4;1\right)\right\}\)

25 tháng 2 2020

Ta có: \(xy+3x-y-3=0\)

\(\Rightarrow\)xy + 3x - y = 6

=>x(y+3) - y = 6

=>x(y+3) - y - 3 = 3

=>x(y+3) - (y+3) = 3

=> (y+3)(x-1) =3

Vì x, y là các số nguyên nên y+3;x-1 là các số nguyên

Ta có bảng sau:

y+3-3-113
y-6-4-20
x-1-1-331
x0-242
 
25 tháng 2 2020

                                                          Bài giải

xy + 3x - y - 3 = 3

xy + 3x - y = 6

x ( y + 3 ) - ( y + 3 ) + 3 = 6

( x - 1 ) ( y + 3 ) = 3

Ta có bảng :

x - 1 - 3 - 1 1    3
y + 3 - 1 - 3 3   1
x - 2   0 2   4
y - 4 - 6 0 - 2

Vậy ( x , y ) = ( - 2 ; - 4 ) ; ( 0 ; - 6 ) ; ( 2 ; 0 ) ; ( 4 ; - 2 )

15 tháng 1 2019

\(xy+4x+y=3\)

\(\Leftrightarrow x\left(y+4\right)+\left(y+4\right)=7\)

\(\Leftrightarrow\left(x+1\right)\left(y+4\right)=7\)

Vì x ; y nguyên nên x + 1 nguyên , y + 4 nguyên

Ta có bảng

x + 1               -7                   -1                     1                   7                     
y + 4-1-771
x-8-206
y-5-113-3

Vậy ,.............

16 tháng 1 2019

\(xy+4x+y=3\)

\(\Rightarrow x\left(y+4\right)+\left(y+4\right)=3+4\)

\(\Rightarrow\left(x+1\right)\left(y+4\right)=7\)

\(\Rightarrow\left(x+1\right);\left(y+4\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

Ta có các trường hợp sau 

\(TH1:\hept{\begin{cases}x+1=1\\y+4=7\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=3\end{cases}}}\)            \(TH2:\hept{\begin{cases}x+1=-1\\y+4=-7\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-11\end{cases}}}\)

\(TH3:\hept{\begin{cases}x+1=7\\y+4=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=-3\end{cases}}}\)      \(TH4:\hept{\begin{cases}x+1=-7\\y+4=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=-5\end{cases}}}\)

Vậy\(\left(x;y\right)\in\left\{\left(0;3\right);\left(-2;-11\right);\left(6;-3\right);\left(-8;-5\right)\right\}\)

24 tháng 8 2016

xy + 3y - 5x = 9 nhé...mình viết nhầm ạ

 

24 tháng 8 2016

11=1x11=11x1=-1x-11=-11x-1

TH1:

2x-1=1                            y+4=11

2x=2                                y=7

x=1

TH2:

2x-1=11                            y+4=1

2x=12                                y=-5

x=6

TH3:

2x-1=-1                            y+4=-11

2x=-2                                y=-15

x=-1

TH4:

2x-1=-11                            y+4=-1

2x=-10                                y=-5

x=-5

5 tháng 8 2019

\(a,x+y=xy\)

\(\Rightarrow x-xy+y-1=-1\)

\(\Rightarrow x\left(1-y\right)-\left(1-y\right)=-1\)

\(\Rightarrow\left(x-1\right)\left(1-y\right)=-1\)

TH1 : \(\hept{\begin{cases}x-1=1\\1-y=-1\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=2\end{cases}}}\)

TH2 : \(\hept{\begin{cases}x-1=-1\\1-y=1\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}}\)

\(b,xy-x+2\left(y-1\right)=13\)

\(\Rightarrow x\left(y-1\right)+2\left(y-1\right)=13\)

\(\Rightarrow\left(x+2\right)\left(y-1\right)=13\)

TH1 : \(\hept{\begin{cases}x+2=1\\y-1=13\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=14\end{cases}}}\)

TH2 : \(\hept{\begin{cases}x+2=13\\y-1=1\end{cases}\Rightarrow\hept{\begin{cases}x=11\\y=2\end{cases}}}\)

TH3 : \(\hept{\begin{cases}x+2=-1\\y-1=-13\end{cases}\Rightarrow\hept{\begin{cases}x=-3\\y=-12\end{cases}}}\)

TH4 : \(\hept{\begin{cases}x+2=-13\\y-1=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-15\\y=0\end{cases}}}\)