K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2020

a

Nếu  \(y=0\Rightarrow x^2=3025\Rightarrow x=55\)

Nếu \(y>0\Rightarrow3^y⋮3\)

Mà \(3026\equiv2\left(mod3\right)\Rightarrow x^2\equiv2\left(mod3\right)\) 9 vô lý

Vậy.....

b

Không mất tính tổng quát giả sử \(x\ge y\)

Ta có:

\(\frac{1}{2}=\frac{1}{2x}+\frac{1}{2y}+\frac{1}{xy}\le\frac{1}{2y}+\frac{1}{2y}+\frac{1}{y^2}=\frac{1}{y}+\frac{1}{y^2}=\frac{y+1}{y^2}\)

\(\Rightarrow y^2\le2y+2\Rightarrow\left(y^2-2y+1\right)\le3\Rightarrow\left(y-1\right)^2\le3\Rightarrow y\le2\Rightarrow y=1;y=2\)

Với \(y=1\Rightarrow\frac{1}{2x}+\frac{1}{2}+\frac{1}{x}=\frac{1}{2}\Rightarrow\frac{1}{2x}+\frac{1}{x}=0\) ( loại )

Với \(y=2\Rightarrow\frac{1}{2x}+\frac{1}{4}+\frac{1}{2x}=\frac{1}{2}\Rightarrow\frac{1}{x}=\frac{1}{4}\Rightarrow x=4\)

Vậy x=4;y=2 và các hoán vị

13 tháng 1 2020

câu a làm cách khác đi bạn

22 tháng 9 2015

1. \(\frac{x}{y}=\frac{7}{17}\)

3. Có 6 cặp

4. 0 có cặp nào hết

Câu 2 mình không biết nha. Thông cảm

25 tháng 12 2016

Mình sẽ trình bày rõ hơn ở (2) nha

Ta có:

\(\frac{2}{x+1}=\frac{3}{2y-3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{2}{x+1}=\frac{3}{2y-3}\) = \(\frac{2-3}{\left(x+1\right)-\left(2y-3\right)}=\frac{-1}{x+1-2y+3}=\frac{-1}{x-2y+4}\)

(Vì trước ngoặc của 2y - 3 là dấu trừ nên khi phá ngoặc thì nó sẽ trở thành dấu cộng.Đây là quy tắc phá ngoặc mà bạn đã được học ở lớp 6 đó)

25 tháng 12 2016

Ahaha, mình cũng học rồi mà quên mất, cảm giác hiểu ra cái này khó diễn tả thật cậu ạ. Vui chả nói nên lời :))
À quên cảm ơn cậu nhé :^)

14 tháng 11 2018

a, Ta có \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

(=) \(\frac{b}{ab}-\frac{a}{ab}=\frac{1}{a-b}\)

(=) \(\frac{b-a}{ab}=\frac{1}{a-b}\)

(=) \(\left(b-a\right).\left(a-b\right)=ab\)

Vì a,b là 2 số dương

=> \(\hept{\begin{cases}ab>0\left(1\right)\\\left(b-a\right).\left(a-b\right)< 0\left(2\right)\end{cases}}\) 

Từ (1) và (2) => Không tồn tại hai số a,b để \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b}\)

14 tháng 11 2018

b, Cộng vế với vế của 3 đẳng thức ta có :

\(x+y+y+z+x+z=-\frac{7}{6}+\frac{1}{4}+\frac{1}{12}\)

(=) \(2.\left(x+y+z\right)=-\frac{5}{6}\)

(=) \(x+y+z=\frac{-5}{12}\)

Ta có : \(x+y+z=\frac{-5}{12}\left(=\right)-\frac{7}{6}+z=-\frac{5}{12}\left(=\right)z=\frac{3}{4}\)

Lại có \(x+y+z=\frac{-5}{12}\left(=\right)x+\frac{1}{4}=-\frac{5}{12}\left(=\right)x=-\frac{2}{3}\)

Lại có \(x+y+z=-\frac{5}{12}\left(=\right)y+\frac{1}{12}=-\frac{5}{12}\left(=\right)y=\frac{-1}{2}\)

7 tháng 9 2017

\(\frac{x+2y}{x+7}=\frac{2018}{2017}\)

\(2017\left(x+2y\right)=2018\left(x+y\right)\)

\(2017x+4034y=2018x+2018y\)

\(x=2016y\)

x,y nguyên dương nên x nhỏ nhất khi y = 1 

Khi đó x =...

16 tháng 6 2016

Nếu là thi Vio thì chỉ điền đáp số

a) x =6.

b) x = 1; y = 4

Giải kiểu VIO ra đáp số khác với trình bày. 2 bài này đều nhẩm được.

a) Để PS đã cho >0 thì 5<x<7. x chỉ bằng 6 thay vào đúng. Ko cần tìm tiếp

b) Để mẫu chung bằng 4 thì y phải =4; => x = 1. Thỏa mãn.

Cách nhẩm tuy không chặt chẽ bằng bài giải chi tiết nhưng VIO thì rất hiệu quả. Mình trình bày cách nghĩ của mình mong các bạn góp ý.

1 tháng 3 2018

\(VT=\left|3x+1\right|+\left|3x-5\right|=\left|3x+1\right|+\left|5-3x\right|\ge\left|3x+1+5-3x\right|=6\)

\(VP=\frac{12}{\left(y+3\right)^2+2}\le\frac{12}{2}=6\)

Như vậy \(VT\ge6;VP\le6\)

Mà \(VT=VP\Leftrightarrow VT=VP=6\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\frac{1}{3}\le x\le\frac{5}{3}\\y=-3\end{cases}}\)