Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abc + bca + acb = 777
111 . ( a + b + c ) = 7 . 111
a + b + c = 7
vì \(0< a+b+c\le27\) và a,b,c khác nhau
Từ đó ta tìm được các chữ số a,b,c khác nhau và a + b + c = 7
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b=777
=111a + 111b + 111c = 777
=> 111(a+b+c) = 777
=> a+ b + c = 777 : 111
=> a+ b + c = 7
tiếp theo bn tự lm nha!
Áp dụng tính chất của dãy tỉ số bằng nhau:
ab/ac =b/c= ab-b/bc-c =10a/10b
=>b² = a.c
Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.
=> b ∈ 1; 3; 7; 9
Ta xét các chữ số:
- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau )
- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )
- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )
- Với b = 9 thì 9² a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )
Vậy abc = 139.
Áp dụng tính chất của dãy tỉ số bằng nhau:
ab/ac =b/c= ab-b/bc-c =10a/10b
=>b² = a.c
Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.
=> b ∈ 1; 3; 7; 9
Ta xét các chữ số:
- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau )
- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )
- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )
- Với b = 9 thì 9² a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )
Vậy abc = 139.
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{ab}{bc}=\frac{b}{c}=\frac{ab-b}{bc-c}=\frac{\left(10a+b\right)-b}{\left(10b+c\right)-c}=\frac{10a}{10b}=\frac{a}{b}\)
\(\Rightarrow b^2=a.c\)
Do ab nguyên tố nên b lẻ khác 5 \(\Rightarrow b\in\left\{1;3;7;9\right\}\)
+ Với b = 1 thì 12 = a.c = 1 => a = c = 1, vô lý vì \(a\ne b\ne c\)
+ Với b = 3 thì 32 = a.c = 9 \(\Rightarrow\left[\begin{array}{nghiempt}a=c=3\\a=1;c=9\\a=9;c=1\end{array}\right.\), ta chọn được 1 cặp giá trị (a;c) thỏa mãn \(a\ne b\ne c\) và ab nguyên tố là (1;9)
+ Với b = 7 thì 72 = a.c = 49 => a = c = 7, vô lý vì \(a\ne b\ne c\)
+ Với b = 9 thì 92 = a.c = 81 => a = c = 9, vô lý vì \(a\ne b\ne c\)
Vậy abc = 139
Ta có:\(\frac{ab}{bc}=\frac{b}{c}\)(ab,bc có dấu gạch ngang trên đầu)
\(\Rightarrow\frac{10a+b}{10b+c}=\frac{b}{c}\)
\(\Rightarrow\left(10a+b\right)c=\left(10b+c\right)b\)
\(\Rightarrow10ac+bc=10b^2+bc\)
\(\Rightarrow10ac=10b^2\)
\(\Rightarrow ac=b^2\)
\(\Rightarrow abc=\) bao nhiêu tự tính(tui quên các chữ số đôi một là như thế nào rồi và abc có dấu gạch ngang trên đầu)
Áp dụng tính chất của dãy tỉ số bằng nhau:
ab/ac =b/c= ab-b/bc-c =10a/10b
=>b² = a.c
Do ab là nguyên tố nên b lẻ khác 5. Mà b là chữ số.
=> b ∈ 1; 3; 7; 9
Ta xét các chữ số:
- Với b = 1 thì 1² = a.c ⇒ a = c = 1. ( loại vì a; b; c khác nhau )
- Với b = 3 thì 3² = a.c = 9, ta chọn được giá trị a = 1 và c = 9. ( nhận )
- Với b = 7 thì b² = a.c = 49, ta chỉ chọn được cặp giá trị a = c = 7 vì a và c là chữ số. ( loại )
- Với b = 9 thì 9² a.c = 81, ta cũng chỉ chọn được cặp giá trị a = c = 9 vì a và c là chữ số. ( loại )
Vậy abc = 139.
cái này cũng là số à bạn
abc= ab + bc + ca
100a + 10b + c= 11a + 11b + 11c
89a = 10b + c
=> 10b + c \(⋮\)89 (1)
Ta có: \(1\le c\le9\)(c là chữ số)
\(1\le b\le9\Rightarrow10\le10b\le90\)
\(\Rightarrow11\le10b+c\le99\)(2)
Từ (1) và (2) suy ra: 10b + c= 0 hoặc 10b + c= 89
10b + c= 0 => a=0 (vô lý)
=> 10b + c= 89
=> a=1
Ta có: 10b + c= 89
Do b;c là số có 1 chữ số(khác 0)=> b=8; c=9
Vậy a=1;b=8;c=9