Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+\frac{3}{5}=\frac{b-2}{3}=c-\frac{1}{7}\)
\(a+\frac{3}{5}=b-\frac{2}{3},b-\frac{2}{3}=c-\frac{1}{7}\)
\(b=\frac{15r+19}{15}\)
\(c=\frac{35r+26}{35}\)\(;r\in R\)
\(\text{Σ}\frac{a}{b+2c+3d}=\text{Σ}\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{6\left(ab+bc+cd+ad\right)}\)
\(=\frac{\left(a+b\right)^2+\left(c+d\right)^2+2\left(a+b\right)\left(c+d\right)}{6\left(ab+bc+cd+ad\right)}=\frac{a^2+c^2+b^2+d^2+2ab+2cd+2\left(a+b\right)\left(c+d\right)}{6\left(ab+bc+cd+ad\right)}\)
\(\ge\frac{4\left(ab+bc+cd+ad\right)}{6\left(ab+bc+cd+ad\right)}=\frac{2}{3}\)
Dấu = xảy ra khi a=b=c=d
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\)
\(=\frac{a^2}{ab+2ac+3ad}+\frac{b^2}{bc+2bd+3ab}+\frac{c^2}{cd+2ac+3bc}+\frac{d^2}{ad+2bd+3cd}\)
\(\ge\frac{\left(a+b+c+d\right)^2}{4.\left(ab+ad+bc+bd+ca+cd\right)}\)\(\ge\frac{\left(a+b+c+d\right)^2}{\frac{3}{2}.\left(a+b+c+d\right)^2}=\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d\)
\(P=4a+3b+\frac{c^3}{\left(a-b\right)b}\)
\(=\left[\left(a-b\right)+b+\frac{c^3}{\left(a-b\right)b}\right]+3b+3a\)
\(\ge3c+3b+3a=3\left(a+b+c\right)=12\)
Dấu "=" xảy ra tại \(a=2;b=1;c=1\)
Bài 1:tính nhẩm
2+1=..3.. 2+3=..5.. 2+4=..6.. 2+5=...7.
2+6=..7.. 2+7=..9.. 2+8=..10.. 2+9=.11...
2+10=.12...
Bài 2: tìm x
a, x-10=5
x = 5+10
x = 15
b, 2+x=5
x = 5-2
x = 3
c, 6-x=4
x = 6-4
x = 2
d, x+4=8
x = 8 - 4
x = 4
Câu 1:
(x-18)-42=(23-43)-(70+x)
x-18-42=-20-70-x
x-18-42+20+70+x=0
2x+30=0
2x=-30
x=-15
Câu 2 : Tính tổng
a,1+(-2)+3+(-4)+...+19+(-20)
Từ 1 đến -20 có 20 số hạng
=> Có 10 nhóm
=>(1-2)+(3-4)+...+(19-20)
=-1-1-1-....-1
=-1.10
=-10
b,c,d,e làm tương tự ta được :
b) -50
c) -24
d) -99
e) -100
Câu 3 : Tìm x
a)\(x\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-7\end{cases}}}\)
Vậy : x={0;-7}
b)\(\left(x+12\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-12\\x=3\end{cases}}}\)
Vậy:....
c)\(\left(-x+5\right)\left(3-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\x=3\end{cases}}}\)
Vậy:......
d)\(x\left(2+x\right)\left(7-x\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\2+x=0\\7-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-2\\x=7\end{cases}}}\)
Vậy:.....
e) \(\left(x-1\right)\left(x+2\right)\left(-x-3\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+2=0\\-x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=-2\\x=-3\end{cases}}}\)
Vậy:........
Câu 4 :
a) ab+ac
=a(b+c)
b) ab-ac+ad
=a(b-c+d)
c) ax-bx-cx+dx
=x(a-b-c+d)
d) a(b+c)-d(b+c)
=(b+c)(a-d)
e) ac-ad+bc-bd
=a(c-d)+b(c-d)
=(c-d)(a+b)
f) ax+by+bx+ay
=x(a+b)+y(a+b)
=(a+b)(x+y)
#H
Ta có: a: b: c: d = 2: 3 : 4: 5 và a + b + c + d = -42
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
Ta có :
\(\frac{a}{2}=-3\Rightarrow a=-6\)
\(\frac{b}{3}=-3\Rightarrow b=-9\)
\(\frac{c}{4}=-3\Rightarrow c=-12\)
\(\frac{d}{5}=-3\Rightarrow d=-15\)
Ta có: a : b : c : d = 2 : 3 : 4 : 5 => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=-\frac{42}{14}=-3\)
=> \(\frac{a}{2}=-3\) => a = -3.2 = -6
=> \(\frac{b}{3}=-3\) => b = -3.3 = -9
=> \(\frac{c}{4}=-3\) => c = -3.4 = -12
=> \(\frac{d}{5}=-3\) => d = -3. 5 = -15
Vậy ...
\(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}=\frac{3a+9}{15}=\frac{5b-10}{15}=\frac{7c-7}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a+3}{5}=\frac{b-2}{3}=\frac{c-1}{7}=\frac{3a+9}{15}=\frac{5b-10}{15}=\frac{7c-7}{49}\)
\(=\frac{3a+9-5b+10+7c-7}{15-15+49}=\frac{86+12}{49}=2\)
=>a=2.5-3=7;b=2.3+2=8;c=2.7+1=15
\(\frac{a}{4}=\frac{b}{6}\)\(,\)\(\frac{b}{5}=\frac{c}{8}\)
\(\Rightarrow\left(a=\frac{2b}{3}\right)\)\(,\)\(\left(b=\frac{5c}{8}\right)\)
\(\Rightarrow3a=2b\)\(,\)\(8b=5c\)
\(\Rightarrow b=\frac{3a}{2}\)\(,\)\(c=\frac{12a}{5}\)
\(\Rightarrow a=10\)\(,\)\(b=15\)\(,\)\(c=24\)
\(\frac{a}{4}=\frac{b}{6}.\frac{b}{5}=\frac{c}{8}\)
\(\Rightarrow\left(3a=2b,8b=5c\right)\)
\(\Rightarrow b=\frac{3a}{2}.c=\frac{12a}{5}\)
\(\Rightarrow a=10,b=15,c=24\)