Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2a=3b nên 2a-3b=0
Do đó 2a-3b+c=c=6
Vậy 2a=3b=5c=30
suy ra a=30:2=15
b=30:3=10
2a=3b=>a/3=b/2=>a/6=b/4 (1)
3b=4c=>b/4=c/3 (2)
từ (1) và (2) => a/6=b/4=c/3
từ đó dùng tính chất dãy tỉ số = nhau là đc nha!
a/3 = b/2 => a/21 = b/14
b/7 = c/5 => b/14 = c/10
=> a/21 = b/14 = c/10
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{6a-14b+10c}{126-196+100}=\frac{60}{30}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{21}=2\\\frac{b}{14}=2\\\frac{c}{10}=2\end{cases}\Rightarrow\hept{\begin{cases}a=42\\b=28\\c=20\end{cases}}}\)
Vậy,...............
Ta có:
\(\frac{a}{3}=\frac{b}{2}\Rightarrow\frac{a}{21}=\frac{b}{14}\)
\(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\Rightarrow\frac{6a}{126}=\frac{14b}{196}=\frac{10c}{100}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{6a}{126}=\frac{14b}{196}=\frac{10c}{100}=\frac{6a-14b+10c}{126-196+100}=\frac{60}{30}=2\)
Suy ra :
\(\frac{6a}{126}=2\Leftrightarrow6a=252\Leftrightarrow a=42\)
\(\frac{14b}{196}=2\Leftrightarrow14b=392\Leftrightarrow b=28\)
\(\frac{10c}{100}=2\Leftrightarrow10c=200\Leftrightarrow c=20\)
Vậy :\(\hept{\begin{cases}a=42\\b=28\\c=20\end{cases}}\)
\(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\\ 5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\\ \Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{-30}{15}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-42\\b=-28\\c=-20\end{matrix}\right.\)
\(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=-100\\ \Rightarrow18k^2+32k^2-75k^2=-100\\ \Rightarrow-25k^2=-100\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=8;z=10\\x=-6;y=-8;z=-10\end{matrix}\right.\)
Ta có: A(1)=6 => a.12+b.1+c=6
=> a+b+c=6
Theo đầu bài ta có: \(\frac{a}{3}=\frac{b}{2}=\frac{c}{1}\)và a+b+c=6
Áp dụng ...............
\(\frac{a}{3}=\frac{b}{2}=\frac{c}{1}=\frac{a+b+c}{3+2+1}=\frac{6}{6}=1\)
Khi đó: a=3.1=3
b=2.1=2
c=1.1=1
Vậy.................
Nhớ k nhé :))
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{9}=\frac{b}{6}=\frac{c}{7}=\frac{2a+b+c}{2\cdot9+6+7}=\frac{15,5}{31}=0,5\)
\(\Rightarrow\) a = 0,5 . 9 = 4,5; b = 0,5 . 6 = 3; c = 0,5 . 7 = 3,5
Vậy a = 4,5; b = 3; c = 3,5
Đào Gia Khanh : hay là không biết