Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a chia 2 dư 1 => a + 1 chia hết cho 2
a chia 3 dư 2 => a + 1 chia hết cho 3
a chia 4 dư 3 => a + 1 chia hết cho 4
a chia 5 dư 4 => a + 1 chia hết cho 5
a chia 6 dư 5 => a + 1 chia hết cho 6
a chia 10 dư 9 => a + 1 chia hết cho 10
và a nhỏ nhất
=> a + 1 \(\in\) BCNN(2,3,4,5,6,10)
2 = 2 ; 3 = 3 ; 4 = 22 ; 5 = 5 ; 6 = 2.3 ; 10 = 2.5
=> BCNN(2,3,4,5,6,10) = 22.3.5 = 60
=> a + 1 = 60 => a = 60 - 1 => a = 59
Vậy a = 59
ta có :
a - 1 sẽ chia hết tất cả
a chia 5 dư 4 và chia 2 dư 1 , vậy tận cùng là 9 .
ta có thể áp dụng cách tìm BCNN vao bài này .
nếu các số đã cho từng đôi 1 là một đôi nguyên tố cùng nhau thì BCNN của chúng là tích của các số ấy :
1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 = 2519
nhé !
vì a : 4 dư 3=>4k+1+3=4k+4(k thuộc N) chia hết cho 4=>a+1 thuộc B(4)
a : 5 dư 4=>5k+1+4=5k+5(k thuộc N) chia hết cho 5=>a+1 thuộc B(5)
a : 6 dư 5=>6k+1+5=6k+6(k thuộc N) chia hết cho6=>a+1 thuộc B(6)
=>a+1 thuộc BC(4,5,6)
ta có: 4=22 5=5 6=2.3
BCNN(4,5,6)=22.5.3=60
BC(4,5,6)=B(60)={0,60,120,180,...}
vậy a+1 thuộc {0,60,120,180,...}
a thuộc {1,61,121,181,...}
vậy a cần tìm là {1,61,121,181,...}
Vì a : 4 dư 3 nên a+ 1 chia hết cho 4
a: 5 dư 4 nên a+1 chia hết cho 5
a : 6 dư 5 nên a+1 chia hết cho 6
nên a+1 thuộc BC ( 4,5,6)
Ta có :
4=2^2 ; 5=5 ; 6=2.3
BCNN (4,5,6)= 2^2. 3.5=60
BC(4,5,6)= B(60)= {0; 60; 120; 180 ; 240;....}
mà a+1 khác 0 nên a+1 thuộc {60;120;180;240;...}
Vậy a thuộc { 59; 119; 179; 239;...}
A+2 chia het cho (3..6)
BNN[3..6]=60
A=60k-2
A=13t
=> 13t=60k-2
k=13a+10
t=60a+46
nho nhat => a=0
A=13*14=598
Bài 1:
Theo đề ra ta có:
$a-2\vdots 3; a-3\vdots 5$
$a-2-2.3\vdots 3; a-3-5\vdots 5$
$\Rightarrow a-8\vdots 3; a-8\vdots 5$
$\Rightarrow a-8=BC(3,5)$
$\Rightarrow a-8\vdots 15$
$\Rightarrow a=15k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 6
$\Rightarrow a-6\vdots 11$
$\Rightarrow 15k+8-6\vdots 11$
$\Rightarrow 15k+2\vdots 11\Rightarrow 4k+2\vdots 11$
$\Rightarrow 4k+2-22\vdots 11\Rightarrow 4k-20\vdots 11$
$\Rightarrow 4(k-5)\vdots 11\Rightarrow k-5\vdots 11$
$\Rightarrow k=11m+5$
Vậy $a=15k+8=15(11m+5)+8=165m+83$ với $m$ tự nhiên.
Vì $a<500\Rightarrow 165m+83<500\Rightarrow m< 2,52$
$\Rightarrow m=0,1,2$
Nếu $m=0$ thì $a=165.0+83=83$
Nếu $m=1$ thì $a=165.1+83=248$
Nếu $m=2$ thì $a=165.2+83=413$
Bài 2:
$a=BC(60,85,90)$
$\Rightarrow a\vdots BCNN(60,85,90)$
$\Rightarrow a\vdots 3060$
Mà $a<1000$ nên $a=0$