K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 10 2020

ĐKXĐ: \(x\ne a-1\)

Hàm xác định trên K khi:

\(\left[{}\begin{matrix}a-1\ge0\\a-1\le-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a\ge1\\a\le0\end{matrix}\right.\)

a) Để K=R thì ta cần tìm A sao cho với mọi X\(\in R\)thì phân số đã cho xác định

ĐKXĐ : X2 - 6X + A + 2 \(\ne\)0

Ta có : X2 - 6X + A + 2 =0

\(\Delta\)=36 - 4A - 8

       =28 - 4A

mà  X2 - 6X + A + 2 \(\ne\)0 nên 28-4A <0

=> A > 7

NV
16 tháng 9 2019

Để hàm số xác định trên R

\(\Leftrightarrow x^2-6x+a-2=0\) vô nghiệm

\(\Leftrightarrow\Delta'=9-\left(a-2\right)< 0\Leftrightarrow11-a< 0\Rightarrow a>11\)

12 tháng 9 2016

mai em hk oy mong mọi người giúp ạ

ĐKXĐ: \(\hept{\begin{cases}x-m>0,\forall x\in\left(-1;0\right)\\-x+2m+6\ge0,\forall x\in\left(-1;0\right)\end{cases}\Leftrightarrow\hept{\begin{cases}x>m,\forall x\in\left(-1;0\right)\\2m+6\ge x,\forall x\in\left(-1;0\right)\end{cases}}}\)

+) \(m< x,\forall x\in\left(-1;0\right)\)thì \(m\)phải bé hơn GTNN của x trên đoạn (-1;0)

\(\Rightarrow m< -1\)

+) \(2m+6\ge x,\forall x\in\left(-1;0\right)\)thì 2m+6 phải lớn hơn GTLN của x trên đoạn (-1;0)

\(\Rightarrow2m+6\ge0\Leftrightarrow m\ge-3\)

Vậy \(-3\le m< -1\)thỏa đề.

20 tháng 9 2020

Điều kiện để hàm số đã cho xác định là \(\hept{\begin{cases}x-m>0\\-x+2m+6\ge0\end{cases}\Leftrightarrow m< x\le2m+6}\)

Để hàm số có tập xác định \(D\ne\varnothing\)thì phải có m<2m+6 => m>-6 (*) Khi đó hàm số có tập xác định là (m;2m+6]

Hàm số xác định trên (-1;0) khi và chỉ khi (-1;0)\(\subset\)(m;2m+6], điều này tương đương với 

\(\hept{\begin{cases}m\le-1\\2m+6\ge0\end{cases}\Leftrightarrow-3\le m\le-1}\)kết hợp với (*) ta được \(-3\le m\le-1\)

KL:

29 tháng 12 2021

Tìm tập xác định của hàm số:

a) \(y=\frac{3-x}{\sqrt{x-4}}\)

Điều kiện xác định:

\(x-4>0\)

\(\Leftrightarrow x>4\)

\(\Rightarrow\)Tập xác định: \(D=\left(4;+\infty\right).\)

Vậy tập xác định của hàm số là: \(D=\left(4;+\infty\right).\)

b) \(y=\frac{x}{\left(x-1\right)\sqrt{3-x}}\)

Điều kiện xác định:

\(\hept{\begin{cases}x-1\ne0\\3-x>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\-x>-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x< 3\end{cases}}\)

\(\Rightarrow\)Tập xác định: \(D=\left(-\infty;3\right)\backslash\left\{1\right\}.\)

Vậy tập xác định của hàm số là: \(D=\left(-\infty;3\right)\backslash\left\{1\right\}.\)