K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2022

ơ toán lớp 6 mà

30 tháng 5 2017

b)Áp dụng BĐT AM-GM ta có: 

\(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b^3}{b^2+c^2}\ge b-\frac{c}{2};\frac{c^3}{c^2+a^2}\ge c-\frac{a}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge a+b+c-\frac{a+b+c}{2}=\frac{a+b+c}{2}=VP\)

Đẳng thức xảy ra khi \(a=b=c\)

30 tháng 5 2017

Câu b

xét \(\frac{a^3}{a^2+b^2}=a-\frac{ab^2}{a^2+b^2}\ge a-\frac{ab^2}{2ab}=a-\frac{b}{2}\)

chứng minh tương tự và cộng 3 bất đẳng thức ta có:

\(\frac{a^3}{a^2+b^2}+\frac{b^3}{c^2+b^2}+\frac{c^3}{c^2+a^2}\ge a+b+c-\frac{a}{2}-\frac{b}{2}-\frac{c}{2}=\frac{a+b+c}{2}\)

Câu a:

để a là số chính phương thì \(4x^2+8x+21=k^2\left(k\in N\right)\)\(\Leftrightarrow\left(2x+1\right)^2+20=k^2\Leftrightarrow\left(k+2x+1\right)\left(k-2x-1\right)=20\)

do đó \(k+2x+1\)và \(k-2x-1\)là ước của 20 nên ta có :

  • \(\hept{\begin{cases}k+2x+1=20\\k-2x-1=1\end{cases}\Leftrightarrow2k=21\left(L\right)}\)
  • \(\hept{\begin{cases}k+2x+1=10\\k-2x-1=2\end{cases}\Leftrightarrow2k=12\Leftrightarrow k=6\Rightarrow x=\frac{3}{2}}\)
  • \(\hept{\begin{cases}k+2x+1=5\\k-2x-1=4\end{cases}\Leftrightarrow2k=9\left(L\right)}\)
30 tháng 8 2019

Đặt \(a-b=x;b-c=y;c-a=z\)

\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)

Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)

\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

9 tháng 11 2018

Không spam như đừng cmt spam AD :

Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.

Link như sau vào google hoặc cốc cốc để tìm kiếm:

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

Copy cũng được nha