K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

Theo tính chất dãy tỉ số bằng nhau thì:

  \(\frac{x+2}{7}=\frac{y-3}{5}=\frac{z}{3}=\frac{\left(x+2\right)+\left(y-3\right)-x}{7+5-3}=\frac{x+y-z-1}{9}=\frac{-17-1}{9}=-2\)

=> \(\frac{x+2}{7}=-2\Rightarrow x=\left(-2\right).7-2=-16\)

    \(\frac{y-3}{5}=-2\Rightarrow y=\left(-2\right).5+3=-7\)

   \(\frac{z}{3}=-2\Rightarrow z=\left(-2\right).3=-6\)

21 tháng 10 2017

thưa cô theo em nghĩ thì phải là

\(\frac{x+2}{7}=\frac{y-3}{5}=\frac{z}{3}=\frac{\left(x+2\right)+\left(y-3\right)-z}{7+5-3}\) chứ ạ cô nhầm thì phải ạ

21 tháng 10 2017

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{x+3}{5}=\frac{x+y+z+1+2+3}{3+4+5}=\frac{24}{12}=2\)

\(\Rightarrow\)\(\frac{x+1}{3}=2\Rightarrow x=5\)

\(\frac{y+2}{4}=2\Rightarrow y=6\)

\(\frac{z+3}{5}=2\Rightarrow z=7\)

Vậy bạn tự kết luận nha

8 tháng 6 2016

 a) Ta có \(\frac{x-1}{2}\)\(=\)\(\frac{y-2}{3}\)\(=\)\(\frac{z-3}{4}\)\(=\)\(\frac{2x-2}{4}\)\(=\)\(\frac{3y-6}{9}\)\(=\)\(\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\)\(=\)\(\frac{\left(2x+3y-z\right)-5}{9}\)\(=\)\(\frac{50-5}{9}\)\(=\)5                                                       Do đó x \(=\)5\(\times\)2\(+\)1\(=\)11                                                                                                                                                           y\(=\)5\(\times\)3\(+\)2\(=\)17                                                                                                                                                            z\(=\)5\(\times\)4\(+\)3\(=\)23

29 tháng 9 2016

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}x=16\\y=24\\z=30\end{cases}}\)

15 tháng 6 2018

ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

ADTCDTSBN

có: \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\frac{x}{8}=2\Rightarrow x=16\)

y/12 = 2 => y = 24

z/15 = 2 => z = 30

KL: x = 16; y=24;z=30

15 tháng 6 2018

Ta có : 

\(\frac{x}{2}=\frac{y}{3}\)\(\Rightarrow\)\(\frac{x}{8}=\frac{y}{12}\)

\(\frac{y}{4}=\frac{z}{5}\)\(\Rightarrow\)\(\frac{y}{12}=\frac{z}{15}\)

Suy ra : \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

Do đó : 

\(\frac{x}{8}=2\)\(\Rightarrow\)\(x=2.8=16\)

\(\frac{y}{12}=2\)\(\Rightarrow\)\(y=2.12=24\)

\(\frac{z}{15}=2\)\(\Rightarrow\)\(z=2.15=30\)

Vậy \(x=16\)\(;\)\(y=24\) và \(z=30\)

Chúc bạn học tốt ~ 

16 tháng 8 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)

    \(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{6}=\frac{x}{9}\)

\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}\)

Áp dụng t/c dãy tỉ số bằng nhau ,ta được:

\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}=\frac{x-2y+3z}{4-12+27}=1\)

Do đó: x=4

            y=6

           z=9

Vậy......

16 tháng 8 2019

b) Vì \(\frac{x}{1}=\frac{y}{4}\Rightarrow\frac{x}{3}=\frac{y}{12}\)

        \(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}=\frac{4x+y-z}{12+12-16}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.12=24\\z=2.16=32\end{cases}}\)

Vậy 

25 tháng 12 2016

a) \(2x=3y=7z\)

\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)

\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\)

\(\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{30}\)

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{30}=\frac{3x-7y+5z}{63-98+30}=\frac{30}{-5}=-6\)

\(\Rightarrow\hept{\begin{cases}x=21.\left(-6\right)=-126\\y=14.\left(-6\right)=-84\\z=6.\left(-6\right)=-36\end{cases}}\)

25 tháng 12 2016

b) \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{2.4}=\frac{y}{3.4}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{4.3}=\frac{z}{5.3}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ 1 và 2 

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.8=16\\y=2.12=24\\z=2.15=30\end{cases}}\)

27 tháng 10 2016

Bài 1: Tìm x, y, z

\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\frac{x}{9}=3\rightarrow x=27\)

\(\frac{y}{12}=3\rightarrow y=36\)

\(\frac{z}{20}=3\rightarrow z=60\)

Vậy x = 27 ; y = 36 ; z = 60

Bài 2 : Tìm x, y:

5x = 2y và x.y = 40

Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)

Cách 1:

\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40

Đặt \(\frac{x}{2}=\frac{y}{5}\) = k

=> x = 2.k ; y = 5.k

x.y = 40 -> 2k = 5k = 40

-> 10 . \(k^2\) = 40

-> \(k^2\) = 4 -> k = 2 hoặc k = -2

k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)

k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)

Cách 2:

\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)

=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4

x = 4 -> 4.y = 40 => y = 10

x = -4 -> (-4).y = 40 => y = -10

Vậy x = 4 hoặc -4

y = 10 hoặc -10

 

 

 

27 tháng 10 2016

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)

\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)