K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

ĐẶT \(\frac{a}{5}=\frac{b}{3}=\frac{c}{2}=k\)

\(\Rightarrow a=5k,b=3k,c=2k\)

\(\Rightarrow ab=c^2+11\)trở thành:

\(15k^2=4k^2+11\)

\(\Rightarrow15k^2-4k^2=11\)

\(\Rightarrow11k^2=11\)

\(\Rightarrow k^2=1\)

\(\Rightarrow k\in\pm1\)

\(\Rightarrow\hept{\begin{cases}a=5\\b=3\\c=2\end{cases},\hept{\begin{cases}a=-5\\b=-3\\c=-2\end{cases}}}\)

27 tháng 12 2018

\(\frac{a}{5}=\frac{b}{3}=\frac{c}{2}\)

Đặt:\(\frac{a}{5}=\frac{b}{3}=\frac{c}{2}=k\)

\(\Rightarrow a=5k\);\(b=3k\);\(c=2k\)

Mà:\(ab=c^2\)

\(\Rightarrow ab=5k.3k=2k.2k=c^2\)

\(\Rightarrow ab=15k^2=c^2=4k^2\)

\(\Rightarrow ab-c^2=15k^2-4k^2=0\)

\(\Rightarrow k^2 \left(15-4\right)=0\)

\(\Rightarrow11k^2=0\)

\(\Rightarrow k^2=0\)

\(\Rightarrow k=0\)

\(\Rightarrow\hept{\begin{cases}a=5k=5.0=0\\b=3k=3.0=0\\c=2k=2.0=0\end{cases}}\)

16 tháng 12 2016

Ta có :

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{15a-10b}{25}=\frac{6c-15a}{9}\)

\(=\frac{15a-10b+6c-15a}{25+9}=\frac{6c-10b}{34}=\frac{3c-5b}{17}=\frac{5b-3c}{2}\) = 0

=> a+b+c = 5a = - 50 => a = -10; b = -15 ; c = -25

1 tháng 1 2020

b) Ta có : \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a2 - b2 + 2c2 = 108

\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)

⇒ a2 = 4.4 =16 ⇔ a = 4 hoặc -4

b2 = 4.9 = 36 ⇔ b= 6 hoặc -6

2c2 = 4 .32 ⇔ c2 = 64 ⇔ c = 8 hoặc -8

Vậy các cặp ( a ; b ; c ) thỏa mãn là : ( 4; 6; 8 ) ; ( -4 ; -6 ; -8 )

9 tháng 12 2015

Theo tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b-3}{4}=\frac{c+5}{11}=\frac{a+b-3+c+5}{3+4+11}=\frac{a+b+c-3+5}{18}=\frac{34+2}{18}=\frac{36}{18}=2\)

Vì \(\frac{a}{3}=2\Rightarrow a=3\cdot2=6\)

     \(\frac{b-3}{4}=2\Rightarrow b=3+4\cdot2=11\)

    \(\frac{c+5}{11}=2\Rightarrow c=11\cdot2-5=17\)

Vậy a=6

       b=11

       c=17

5 tháng 11 2019

Bài 2/a 

Giả sử \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=2k\\b=3k\\c=5k\end{cases}}\)

\(\Rightarrow\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\Rightarrow\frac{3\cdot2k-2\cdot3k}{5}=\frac{2\cdot5k-5\cdot2k}{3}=\frac{5\cdot3k-3\cdot5k}{2}\)

\(\Rightarrow\frac{6k-6k}{5}=\frac{10k-10k}{3}=\frac{15k-15k}{2}\)

\(\Rightarrow\frac{0}{5}=\frac{0}{3}=\frac{0}{2}=0\left(đpcm\right)\)

Bài 2/c

Có a = 2k ; b = 3k ; c = 5k

=> 2 (a - b) (b - c) = a2

=> 2 (2k - 3k) (3k - 5k) = (2k)2

=> 2 (-1)k . (-2)k = 4k2

=> 4k2 = 4k2 (đpcm)

Mình chỉ làm được có vậy thôi, mong bạn thông cảm =))

Chúc bạn học tốt =))

3 tháng 12 2019

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\Rightarrow\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=0\)

\(\Rightarrow\hept{\begin{cases}\frac{15a-10b}{25}=0\\\frac{6c-15a}{9}=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3a-2b=0\\2c-5a=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3a=2b\\2c=5a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\end{cases}}\)

                                                                                                                   \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

27 tháng 12 2018

Đặt \(\frac{a}{5}=\frac{b}{3}=\frac{c}{2}=k\) =>a=5k,b=3k,c=2k

thay vào ab=c^2+11:

15k^2=4k^2+11

11k^2=11

=>k=1 hoặc k=-1

=>a=5,b=3,c=2 hoặc a=-5,b=-3,c=-2.

5 tháng 8 2019

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}=\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\Rightarrow a=b=c\Rightarrow M=1\)

5 tháng 8 2019

\(b^2=ac;c^2=bd\Rightarrow\frac{b}{c}=\frac{a}{b};\frac{c}{d}=\frac{b}{c}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)