Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2 - 2x + 1=6y^2 - 2x + 2
=> x^2 + 1= 6y^2 + 2
=> x^2= 6y^2 + 1
6y^2 luôn chẵn nên 6y^2 + 1 lẻ
=> x^2 lẻ
=> x lẻ
Ta lại có: 6y^2 + 1=x^2 => x^2 và 6y^2 là 2 số tự nhiên liên tiếp (x^2 > 6y^2)
mà 6y^2 chia hết cho 3 => x^2 chia 3 dư 1
=> x chia 3 dư 1. x có dạng: 3k+1 (k chẵn)
thay vào ta được:
(3k+1)^2= 6y^2 + 1 (cái này chị không biết giải lớp 6 ra sao. chị dùng hàng đẳng thức lớp 8. em có thể tham khảo thêm)
9k^2 + 1 + 6k= 6y^2 + 1
=> 9k^2 + 6k=6y^2
=> 9k^2= 6y^2 - 6k
9k^2= 6(y^2 - k)
Vì k chẵn (cmt) nên k chia hết cho 2 thì k^2 chia hết 4
=> (y^2-k) chia hết 2 => y^2-k chẵn
k lại chẵn nên y^2 chẵn
=> y chẵn. vậy y là số nguyên tố chẵn thì y=2
Thay y vào ta đowjc
x^2+1=6.2^2+2
x^2+1=24+2=26
x^2=25
=> x=5
Đối với những bài này, em để ý có hàng đẳng thức x^2 + 1=6y^2 + 2. vậy thì chắc chắn phải có lẻ chẵn. ta nên đi tìm ẩn chẵn trước vì ẩn chẵn nguyên tố thì ẩn đó =2.
Có x2-2x+1=6y2-2x+2
=>x2=6y2+1
=>x2-1=6y2
=>6y2=(x-1)(x+1)
Do (x+1)-(x-1)=2 nên x+1 và x-1 cùng chẵn hoặc cùng lẻ
=>x+1 và x-1 cùng chẵn
=>x+1 và x-1 là 2 số chẵn liên tiếp
=>(x+1)(x-1) chia hết cho 8
6y2 chia hết cho 8
=> 3y2 chia hết cho 4
=> y2 chia hết cho 4
=> y chia hết cho 2
=>y=2 ( do y nguyên tố)
Thay y=2, ta có
x2-2x+1=6.22-2x+2
=>(x-1)2=24-2(x-1)
=>(x-1)2+2(x-1)=24
=>(x-1)[(x-1]+2]=24
=>(x-1)(x+1)=24=4.6=(5-1)(5+1)
=>x=5
Vậy y=2, x=5
Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
tích nha
link này nha : https://olm.vn/hoi-dap/question/86222.html
Ta có: x^2 – 2x + 1 = 6y^2 -2x + 2
=> x^2 – 1 = 6y^2 => 6y^2 = (x-1).(x+1) chia hết cho 2 , do 6y^2 chia hết cho 2
Mặt khác x-1 + x +1 = 2x chia hết cho 2 => (x-1) và (x+1) cùng chẵn hoặc cùng lẻ.
Vậy (x-1) và (x+1) cùng chẵn => (x-1) và (x+1) là hai số chẵn liên tiếp
(x-1).(x+1) chia hết cho 8 => 6y^2 chia hết cho 8 => 3y^2 chia hết cho 4 => y^2 chia hết cho 4 => y chia hết cho 2
y = 2 ( y là số nguyên tố) , tìm được x = 5
ta có x2y + xy - x = xy (x+1)-x-1=xy(x+1) - (x+1) = (x+1)(xy-1)=5