Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x-2y= 2(x+y)
=> x-2y = 2x+2y
=> -2y-2y= 2x-x
=> x= -4y
Thay x= -4y vào x-y= x/y
=> -4y-y = -4y/ y
=.> -5y= -4
=> y =4/5
=> x= -16/5
bạn ơi mk làm nhanh chỗ tìm x nha
chỗ tìm x bạn làm vậy nè: x =-4y hay x= -4 . 4/5 = -16/5
d) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{x-2y+3z-6}{8}\)
\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)
\(\Rightarrow\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy \(x=-3\); \(y=-4\); \(z=-5\)
e) \(x\left(x+y+z\right)=-12\); \(y\left(y+z+x\right)=18\); \(z\left(z+x+y\right)=30\)
\(\Rightarrow x\left(x+y+z\right)+y\left(y+z+x\right)+z\left(z+x+y\right)=-12+18+30\)
\(\Leftrightarrow\left(x+y+z\right)^2=36\)\(\Leftrightarrow\orbr{\begin{cases}x+y+z=-6\\x+y+z=6\end{cases}}\)
TH1: Nếu \(x+y+z=-6\)\(\Rightarrow x=\frac{-12}{-6}=2\); \(y=\frac{18}{-6}=-3\); \(z=\frac{30}{-6}=-5\)
TH2: Nếu \(x+y+z=6\)\(\Rightarrow x=\frac{-12}{6}=-2\); \(y=\frac{18}{6}=3\); \(z=\frac{30}{6}=5\)
Vậy các cặp giá trị \(\left(x;y;z\right)\)thỏa mãn là \(\left(2;-3;-5\right)\), \(\left(-2;3;5\right)\)
\(x-y=2\left(x+y\right)\)
\(\Leftrightarrow x-y=2x+2y\)
\(\Leftrightarrow x-2x=2y+y\)
\(\Leftrightarrow-x=3y\)
\(\Leftrightarrow x=-3y\)
\(\Leftrightarrow-3y-2y=\frac{-9y}{y}\)
\(\Leftrightarrow-5y=-9\)
\(\Leftrightarrow y=\frac{9}{5}\)
\(\Leftrightarrow x=\frac{-27}{5}\)
Vậy \(x=\frac{-27}{5}\) và \(y=\frac{9}{5}\)
Mình giải như vầy:
\(x-2y=2\left(x+y\right)\Rightarrow x-2y=2x+2y\)
\(\Rightarrow x-2x=2y+2y\Rightarrow-x=4y\)
\(\Rightarrow\frac{x}{-4}=\frac{y}{1}=\frac{x-y}{-4-1}=\frac{\frac{x}{y}}{-5}=\frac{x}{-5y}\)
Lúc đó \(\frac{x}{-4}=\frac{x}{-5y}\)
Suy ra x = 0 hoặc \(-4=-5y\)
TH1: x = 0\(\Rightarrow x-y=\frac{x}{y}\Leftrightarrow0-y=0\Rightarrow y=0\)(loại vì y khác 0)
TH2: \(-4=-5y\Rightarrow y=\frac{4}{5}\)
Sau đó tính x = \(\frac{-16}{5}\)
Bài 2 :
Ta có : x - y = xy => x = xy + y = y ( x + 1 )
=> x : y = x + 1 ( vì y khác 0 )
Ta có : x : y = x - y => x + 1 = x - y => y = -1
Thay y = -1 vào x - y = xy , ta được x - (-1) = x (-1) => 2x = -1 => x = -1/2
Vậy x = -1/2 ; y = -1
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}\)
\(=\frac{-10-6}{8}=\frac{-16}{8}=-2\)
=>x=(-2).2+1=-3;y=(-2).3+2=-4;z=(-2).4+3=-5
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x-1}{2}\)=\(\frac{y-2}{3}\)=\(\frac{2y-4}{6}\)=\(\frac{z-3}{4}=\frac{3z-9}{12}\)=\(\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{2-6+12}\)=\(\frac{-10+\left(-6\right)}{8}\)=-2
\(\Rightarrow\)\(\hept{\begin{cases}x-1=-4\\y-2=-6\\z-3=-12\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=-3\\y=-4\\z=-9\end{cases}}\)(vì x,y,z là số hữu tỉ)
Vậy x=-3; y=-4; z=-9
Vậy x=-3;y=-4;z=-9
Giúp mình với !!!!!!!
Tìm 2 số hữu tỉ x,y biết :
x - 2y = 2(x +y ) và x - y =\(\dfrac{x}{y}\) (y ≠ 0 )
\(x-2y=2x+2y\\ \Rightarrow x=-4y\left(1\right)\\ \Rightarrow\dfrac{x}{y}=-4\\ \Rightarrow x-y=-4\Rightarrow x=-4+y\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow-4+y=-4y\\ \Rightarrow-5y=-4\Rightarrow y=\dfrac{4}{5}\\ \Rightarrow x=-4\cdot\dfrac{4}{5}=-\dfrac{16}{5}\)
\(x-y=2\left(x+y\right)\)
\(\Rightarrow x-y=2x+2y\)
\(\Rightarrow2x+2y-x+y=0\)
\(\Rightarrow x+3y=0\)
\(\Rightarrow x=-3y\)
Thay \(x=-3y\) vào \(x-2y=\frac{3x}{y}\) ta được:
\(-3y-2y=\frac{-9y}{y}\)
\(\Rightarrow-5y=-9\)
\(\Rightarrow y=\frac{9}{5}\)
\(\Rightarrow x=-3.\frac{9}{5}=-\frac{27}{5}\)
Vậy ........................