K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2016

Gọi số cần tìm là ab(a>0)

=>ab=(a+b)*4+3

=>ab-(a+b)*4-3=0

=>10a+b-4a-4b-3=0

=>6a-3b-3=0

=>2a-b-1=0

=>2a-1=b

=>b lẻ sau đó cậu xét các trường hợp là được

10 tháng 3 2016

là : 23 ; 35 ; 47  ; 59

29 tháng 5 2017

đặt số đó là aabb

ta có aabb = 1100.a +11.b = 11.a0b .Do aabb phân tích thành 1 tích của 3 thừa số có 2 chữ số và chia hết cho 11, nên a0b là tích của 2 số có 2 chũ số chia hết cho 11.

=> a0b = 11x.11y = 121.xy

=> 2. xy chia hết cho 10

suy ra xy = 5

=> a0b = 605

vậy aabb = 6655 

29 tháng 5 2017

bạn ơi cho mk hỏi tại sao 2xy chia hết cho 10

26 tháng 7 2015

Gọi số cần tìm là abc

Nhận thấy rằng  \(2\le a+b+c\le27\)(do \(1\le a\le9\) và \(0\le b\le9\) và \(1\le c\le9\)

                 \(\Rightarrow2\le16+b\le27\)

                 \(\Rightarrow b=2\)

Ta có:  \(a2c-c2a=198\)

     \(\Rightarrow100a+20+c-\left(100c+20+a\right)=198\)

     \(\Rightarrow99a-99c=198\) 

     \(\Rightarrow99\left(a-c\right)=198\) \(\Rightarrow a-c=2\)

Mà theo đề bài ta có:  \(a+c=16\)

Từ đó ta suy ra: \(a=9\) và  \(c=7\)

Vậy số cần tìm là 927

6 tháng 4 2020

Bài 1:

Gọi 2 số là a,b (\(a,b\inℤ\))

Ta có: a+b=51(*)

Mà 2/5a=1/6b

=> a=5/12b

Thay vào (*) ta có: 17/12b=51

=>b=36

28 tháng 5 2020

Bài 1 : 

Gọi số thứ nhất và số thứ hai lần lượt là x và y (x,y thuộc z)

Tổng hai số bằng : \(x+y=51\left(1\right)\)

Biết 2/5 số thứ nhất thì bằng 1/6 số thứ hai 

\(x\frac{2}{5}-y\frac{1}{6}=0\left(2\right)\)

Từ 1 và 2 ta suy ra được hệ phương trình sau :

\(\hept{\begin{cases}x+y=51\\x\frac{2}{5}-y\frac{1}{6}=0\end{cases}}\)\(< =>\hept{\begin{cases}x=51-y\\\frac{2x}{5}-\frac{y}{6}=0\end{cases}}\)

\(< =>\frac{\left(51-y\right)2}{5}-\frac{y}{6}=0\)\(< =>\frac{102-2y}{5}-\frac{y}{6}=0\)

\(< =>\frac{102-2y}{5}=\frac{y}{6}\)\(< =>\left(102-2y\right)6=5y\)

\(< =>612-12y=5y\)\(< =>612=17y\)

\(< =>y=\frac{612}{17}=36\left(3\right)\)

Thay 3 vào 1 ta được : \(x+y=51\)

\(< =>x+36=51< =>x=51-36=15\)

Vậy số thứ nhất và số thứ hai lần lượt là 15 và 36