Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi phân tích kĩ:
bội chung nhỏ nhất nhân ước chung lớn nhất bằng tích 2 số.
a.b=19.
Tìm các ước dễ vì 19 là số nguyên tố mà.
a và b là...
Chúc học giỏi,cách làm tương tự
câu a; b cách làm tương tự nhau. Bạn xem câu ở câu hỏi tương tự: http://olm.vn/hoi-dap/question/89869.html
c) đề bài cho [a;b] + (a;b) = 15
gọi d = (a;b) => a = d.m; b = d.n ( coi m < n và m; n nguyên tố cùng nhau)
Ta có: [a;b] = \(\frac{a.b}{d}=\frac{dm.dn}{d}=d.m.n\)
khi đó, d.mn + d = 15 => d(m.n + 1) = 15 => m.n + 1 \(\in\) Ư(15) mà m.n + 1 > 2
=> m.n + 1 \(\in\) {3;5;15}
+) m.n + 1 = 3 => m.n = 2 = 1.2 => m = 1; n = 2 và d = 5 => a = 5.1 = 5; b = 5.2 = 10
+) m.n + 1 = 5 => m.n = 4 = 1.4 => m = 1; n = 4 và d = 3 => a = 3.1 = 3; b = 3.4 = 12
+) m.n + 1 = 15 => m.n = 14 =1 .14 = 2.7
m =1; n = 14 ; d = 1 => a= 1; b = 14
m = 2; n = 7 ;d = 1 => a = 2; b = 7
Vậy....
Gọi các số phải tìm là a và b, giả sử a nhỏ hơn hoặc bằng b. Ta có (a, b) = 10 nên a = 10.a', b = 10.b', (a', b') = 1, a' nhỏ hơn hoăc bằng b'. Do đó a. b = 100.a'.b' (1). Mặt khác ab = [a, b]. (a, b) = 900. 10 = 9000 (2).
Từ (1) và (2) suy ra a'. b' = 90. Ta có các trường hợp sau :bạn tự suy ra nhé
hok tốt
Gọi 2 số đó là 12a và 12b, a<b
Coi BCNN(12a,12b)=k
Vì bội chung nhỏ nhất có 2 chữ số nên giá trị lớn nhất của k là 96
Có:hai số ấy,ước chung Iớn nhất của chúng,bội chung nhỏ nhất của chúng là bốn số tự nhiên khác nhau và đều có hai chữ số.
Suy ra:: \(12a<12b\le\frac{96}{2}=48\)
=> a<b < 4
Tất nhiên a khác 1 vì nếu a=1, 12a=12=ƯCLN(12a,12b)
=> a=2;b=3 hoặc a=3;b=4
Với a=2;b=3
=> 2 số đó là 24,36
=> ƯCLN(24;36)=12
BCNN(24,36)=72
=>chọn
Với a=3, b=4
=> 2 số đó là 36,48
=> ƯCLN(36;48)=12
BCNN(36,48)=144 -> loại
Vậy 2 số cần tìm là 24,36
Gọi 2 số đó là 12a và 12b, a<b
Coi BCNN(12a,12b)=k
Vì bội chung nhỏ nhất có 2 chữ số nên giá trị lớn nhất của k là 96
Có:hai số ấy,ước chung Iớn nhất của chúng,bội chung nhỏ nhất của chúng là bốn số tự nhiên khác nhau và đều có hai chữ số.
Suy ra:12a<12b\(\le\frac{96}{2}\)=48
=> a<b<4
Tất nhiên a khác 1 vì nếu a=1, 12a=12=ƯCLN(12a,12b)
=> a=2;b=3 hoặc a=3;b=4
Với a=2;b=3
=> 2 số đó là 24,36
=> ƯCLN(24;36)=12
BCNN(24,36)=72
=>chọn
Với a=3, b=4
=> 2 số đó là 36,48
=> ƯCLN(36;48)=12
BCNN(36,48)=144 -> loại
Vậy 2 số cần tìm là 24,36
Gọi 2 số cần tìm là a và b (a,b là 2 số tự nhiên khác 0 và có chữ số hàng đơn vị khác nhau)
Ta có : (a,b)=12 và [a,b]=72
\(\Rightarrow\)ab=(a,b).[a,b]=12.72=864
Vì (a,b)=12 nên ta có : \(\hept{\begin{cases}a=12m\\b=12n\\\left(m,n\right)=1\end{cases}}\)
Mà ab=864 nên ta có :
12m.12n=864
\(\Rightarrow\)144m.n=864
\(\Rightarrow\)mn=6
Vì (m,n)=1 và a,b có chữ số hàng đơn vị khác nhau nên ta có bảng sau :
m 2 3
n 3 2
a 24 36
b 36 24
Vậy (a;b)\(\in\){(24;36);(36;24)}
axb =ưclnxbcnn
12 x 72=864=axb
giả sử a>b
ưcln {ab} =a=kx12 b=qx12
k>q kq=1
axb =864
kx12xqx12=864
144xkq=864
kq =864 : 144=6
k=6 k=3
q=1 q=2
a=72 a=36
b=12 b=24
ƯCLN ( a,b ) = d \(\Leftrightarrow\hept{\begin{cases}a=da'\\b=db'\\\left(a',b'\right)=1\end{cases}}\)
BCNN ( a,b ) = \(\frac{a.b}{ƯCLN\left(a,b\right)}=\frac{da'.db'}{d}=da'b'\)
BCNN ( a,b ) + ƯCLN ( a,b ) = 19
d . ( a'b' + 1 ) = 19
Do đó : a'b' + 1 là ước của 19 và a'b' + 1 \(\ge\)2
Giả sử a \(\ge\)b thì a' \(\ge\)b' . Ta được :
d 1 a'b' + 1 19 a'b' 18 =2.3^2 a' 18 9 b' 1 2 a 18 9 a 1 2
Vậy hai số là 18 và 1; 9 và 2