K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2022

giup mk di

24 tháng 1 2022

Gọi số phải tìm là: ab

Khi viết thêm 1 vào bên phải thì được: ab1

Theo đề bài thì ta có hệ:

\(\hept{\begin{cases}100a+10b+1-10a-b=577\\10a+b-10b-a=18\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a=6\\b=4\end{cases}}\)

Vậy số phải tìm kà 64

10 tháng 4 2020

gọi số cần tìm là \(\overline{xy}\)

ta có hệ

\(\hept{\begin{cases}5x-y=12\\\left(10y+x\right)-\left(10x+y\right)=36\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}5x-y=12\\-9x+9y=36\end{cases}=>\hept{\begin{cases}45x-9y=108\\-45x+45y=180\end{cases}=>\hept{\begin{cases}36y=288\\5x-y=12\end{cases}=>\hept{\begin{cases}y=8\\5x=20\end{cases}}}}}\)

\(\Rightarrow\hept{\begin{cases}y=8\\x=4\end{cases}}\)

zậy số cần tìm là 48

Gọi số cần tìm là \(\overline{ab}\)(Điều kiện: \(\left\{{}\begin{matrix}a,b\in N\\0< a\le10\\0\le b\le10\end{matrix}\right.\))

Vì ba lần chữ số hàng chục lớn hơn chữ số hàng đơn vị là 6 đơn vị nên ta có phương trình: \(3a-b=6\)(1)

Vì khi viết hai chữ số ấy theo thứ tự ngược lại thì được một số mới lớn hơn số cũ là 36 đơn vị nên ta có phương trình: \(10b+a-\left(10a+b\right)=36\)

\(\Leftrightarrow10b+a-10a-b=36\)

\(\Leftrightarrow-9a+9b=36\)

\(\Leftrightarrow a-b=-4\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}3a-b=6\\a-b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=10\\a-b=-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=5\\b=a+4=5+4=9\end{matrix}\right.\)(thỏa ĐK)

Vậy: Số cần tìm là 59

4 tháng 2 2021

Gọi số tự nhiên đó là ab (ab >10). Theo đề bài ta có :

Số đó gấp 4 lần tổng các chữ số của nó nên ta có phương trình: 

\(ab=4\left(a+b\right)\Leftrightarrow10a+b=4a+4b\) \(\Leftrightarrow10a-4a+b-4b=0\Leftrightarrow6a-3b=0\) ⇔  2a-b=0(1)

Nếu viết 2 chữ số của nó theo thứ tự ngược lại thì được số mới lớn hơn số ban đầu 36 đơn vị nên ta có phương trình :

\(ba-ab=36\Leftrightarrow10b+a-10a-b=36\)

\(\Leftrightarrow9b-9a=36\Leftrightarrow b-a=4\left(2\right)\)

Từ (1) và (2) ta có hệ phương trình: \(\left\{{}\begin{matrix}2a-b=0\left(1\right)\\b-a=4\left(2\right)\end{matrix}\right.\)

Cộng từng vế của (1) và (2) ta được : a=4 Thay vào (2) ta được:

\(b-4=4\Leftrightarrow b=8\) ⇒ab=48. Vậy...