K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Do đó, hàm số đã cho đạt cực tiểu tại điểm x = 3 => y = -5

Phương trình tiếp tuyến tại điểm cực tiểu là:

y = 0(x - 3) – 5 = -5

Đây là đường thẳng song song với trục hoành,

Chọn B.

31 tháng 3 2017

y’ = x² – 4x + 3 = 0 ⇔ x =1, x = 3 y” = 2x – 4, y”(1) = -2, y”(3) = 2 Suy ra hàm số đạt cực tiểu tại x = 3. Phương trình tiếp tuyến tại điểm cực tiểu có hệ số góc là y'(3) = 0. Do đó, tiếp tuyến song song với trục hoành. Chọn B

31 tháng 3 2017

y’= x2 – 4x + 3 = 0 ⇔ x = 1, x = 3

y’’ = 2x -4, y’’(1) = -2, y’’(3) = 2

Suy ra hàm số đạt cực tiểu tại x = 3.

Phương trình tiếp tuyến tại điểm cực tiểu có hệ số góc y’(3) = 0. Do đó tiếp tuyến song song với trục hoành.

Chọn đáp án 2



29 tháng 4 2016

a. Tiếp tuyến của \(\left(C_m\right)\) tại điểm có hoành độ x = 1 có phương trình :

\(y=\left(m-2\right)\left(x-1\right)+3m-2=\left(m-2\right)x+3m\)

Yêu cầu của bài toán khi và chỉ khi \(\begin{cases}m-2=3\\2m\ne10\end{cases}\) vô nghiệm

Vậy không tồn tại m thỏa mãn yêu cầu bài toán

b. Ta có \(y'=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+m-\frac{7}{3}=3\left(x-\frac{2}{3}\right)^2+m-\frac{7}{3}\)

Suy ra \(y'\ge m-\frac{7}{3}\)

Tiếp tuyến tại điểm có hoành độ \(x=\frac{2}{3}\) có hệ số góc nhỏ nhất và hệ số góc có giá trị \(k=m-\frac{7}{3}\)

Yêu cầu bài toán \(\Leftrightarrow k.2=-1\Leftrightarrow\left(m-\frac{7}{3}\right).2=-1\Leftrightarrow m=\frac{11}{6}\)

8 tháng 4 2016

Ta có \(M\left(-1;-2\right)\)

Phương trình của (C) tại M là \(\Delta:y=y'\left(-1\right)\left(x+1\right)-2\)

                                     hay \(\Delta:y=9x+7\)

\(\Delta\) // d \(\Leftrightarrow\begin{cases}m^2+5=9\\3m+1\ne7\end{cases}\) \(\Leftrightarrow\begin{cases}m=\pm2\\m\ne2\end{cases}\) \(\Leftrightarrow m=-2\)

 

29 tháng 4 2016

Ta có : \(y'=\frac{x^2-2x}{\left(x-1\right)^2}\)

Gọi \(M\left(x_0;y_0\right)\) là tọa độ tiếp điểm của tiếp tuyến d với (C)

\(d:y=\frac{x_0^2-2_0x}{\left(x_0-1\right)^2}\left(x-x_0\right)+\frac{x_0^2-x_0+1}{x_0-1}\)

a) Vì d song song với đường thẳng \(\Delta:y=\frac{3}{4}x+\frac{1}{4}\) nên ta có :

\(\frac{x_0^2-2_0x}{\left(x_0-1\right)^2}=\frac{3}{4}\Leftrightarrow x_0^2-2_0x-3=0\Leftrightarrow x_0=-1;x_0=3\)

\(x_0=-1\) phương trình tiếp tuyến : \(y=\frac{3}{4}x-\frac{3}{4}\)

\(x_0=3\) phương trình tiếp tuyến : \(y=\frac{3}{4}x+\frac{5}{4}\)

b) Đường thẳng \(\Delta_m\) có hệ số góc \(k_m=\frac{1}{m}\)

Số tiếp tuyến thỏa mãn bài toán chính là số nghiệm của phương trình :

\(y'.k_m=-1\Leftrightarrow\frac{m\left(x^2-2x\right)}{\left(x-1\right)^2}=-1\)

                   \(\Leftrightarrow\left(m+1\right)x^2-2\left(m+1\right)x+1=0\left(1\right)\)

* Nếu m = - 1 suy ra (1) vô nghiệm, suy ra không có tiếp tuyến nào

* Nếu \(m\ne-1\), suy ra (1) có \(\Delta'=m\left(m+1\right)\) và (1) có nghiệm \(x=1\Leftrightarrow m=0\)

             + Khi \(\left[\begin{array}{nghiempt}m>0\\m< -1\end{array}\right.\) suy ra (*) có 2 nghiệm phân biệt nên có 2 tiếp tuyến

             + Khi \(-1< m\le0\) thì (*) vô nghiệm nên không có tiếp tuyến nào

 
29 tháng 4 2016

Gọi k là hệ số góc của tiếp tuyến tại M, N thì \(x_M;x_N\) là nghiệm của phương trình :

\(f'\left(x\right)=k\Leftrightarrow3x^2-6x-k=0\)

Để tồn tại hai tiếp điểm M, N thì phải có \(\Delta'>0\Leftrightarrow k>-3\)

Ta có \(y=f'\left(x\right)\left(\frac{1}{3}x-\frac{1}{3}\right)-2x+2\)

Từ \(f'\left(x_M\right)=f'\left(x_N\right)=k\) suy ra phương trình đường thẳng MN là :

\(y=\left(\frac{k}{3}-2\right)x+2-\frac{k}{3}\), khi đó \(A\left(1;0\right);B\left(0;\frac{6-k}{3}\right)\)

Ta có \(AB^2=10\Leftrightarrow k=15\) (do k > -3)

Từ đó ta có 2 tiếp tuyến cần tìm là :

\(y=15x-12\sqrt{6}-15\)

\(y=15x+12\sqrt{6}-15\)

NV
29 tháng 9 2020

a/

\(y'=-\frac{4}{\left(x-2\right)^2}\Rightarrow\left\{{}\begin{matrix}y'\left(3\right)=-4\\y\left(3\right)=6\end{matrix}\right.\)

Pt tiếp tuyến: \(y=-4\left(x-3\right)+6\Leftrightarrow y=-4x+18\)

b.

\(y'=\frac{-5}{\left(x-1\right)^2}\)

Tiếp tuyến song song với \(y=-5x-3\) nên có hệ số góc \(k=-5\)

\(\Rightarrow\frac{-5}{\left(x-1\right)^2}=-5\Rightarrow\left(x-1\right)^2=1\Rightarrow\left[{}\begin{matrix}x=2\\x=0\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn

27 tháng 4 2016

Tập xác định \(D=R\backslash\left\{2-m\right\}\)

Ta có : \(y'=\frac{m^2-2m-1}{\left(x+m-2\right)^2}\)

a) Tiếp tuyến tại điểm có hoành độ x = 1 song song với đường thẳng :

\(y=x+1\) khi \(y'\left(1\right)=-1\Leftrightarrow\frac{m^2-2m-1}{\left(x+m-2\right)^2}=-1\Leftrightarrow m=0;m=2\)

* Với m = 0 ta có phương trình tiếp tuyến \(y=-\left(x-1\right)-1=-x\)

* Với m = 2 ta có phương trình tiếp tuyến \(y=-\left(x-2\right)+3=-x+5\)

Vậy m = 0 là giá trị cần tìm

 

b) G\(m\ge1+\sqrt{2};m\le1-\sqrt{2}\)ọi \(M\left(x_0;y_0\right)\) là tiếp điểm. Ta có \(y'\left(x_0\right)=-\frac{1}{2}\)

\(\frac{m^2-2m-1}{\left(x_0+m-2\right)^2}=-\frac{1}{2}\) (*)

Yêu cầu bài toán suy ra (*) vô nghiệm, điều đó xảy ra khi :

\(m^2-2m-1\ge0\Leftrightarrow\left[\begin{array}{nghiempt}m\ge1+\sqrt{2}\\m\le1-\sqrt{2}\end{array}\right.\)

Vậy giá trị cần tìm là \(m\le1-\sqrt{2};m\ge1+\sqrt{2}\)

29 tháng 4 2016

a) Ta có : \(y'=3x^2+2\left(m-1\right)x+m\left(m-3\right)\)

Hàm số (1) có cực đại và cực tiểu nằm 2 phía đối với trục tung <=> phương trình : \(3x^2+2\left(m-1\right)x+m\left(m-3\right)=0\) có 2 nghiệm phân biệt trái dấu

\(\Leftrightarrow P< 0\Leftrightarrow m\left(m-3\right)< 0\Leftrightarrow0< m< 3\)

Vậy \(0< m< 3\) là giá trị cần tìm

b) Khi m = 1 ta có : \(y=x^3-2x\)

Gọi \(M\left(a;a^3-2a\right)\in\left(C\right),a\ne0\)

Ta có \(y'=3x^2-2\) nên hệ số góc của \(\Delta\) là \(y'\left(a\right)=3a^2-2\)

Ta có \(\overrightarrow{OM}\left(a;a^3-2a\right)\) nên hệ số góc đường thẳng OM là \(k=a^2-2\)

Do đó : \(\Delta\perp OM\Leftrightarrow y'_a.k=-1\)

                           \(\Leftrightarrow\left(3a^2-2\right)\left(a^2-2\right)=-1\Leftrightarrow3a^4-8a^2+5=0\)

                \(M_1\left(1;-1\right);M_1\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)          \(\Leftrightarrow\left[\begin{array}{nghiempt}a^2=1\\a^2=\frac{5}{3}\end{array}\right.\)  \(\Leftrightarrow\left[\begin{array}{nghiempt}a=\pm1\\a=\pm\frac{\sqrt{5}}{3}\end{array}\right.\)(Thỏa mãn)

Suy ra có 4 điểm thỏa mãn đề bài :\(M_1\left(1;-1\right);M_2\left(-1;1\right);M_3\left(-\frac{\sqrt{15}}{3};\frac{\sqrt{15}}{9}\right);M_4\left(\frac{\sqrt{15}}{3};-\frac{\sqrt{15}}{9}\right)\)

 

27 tháng 4 2016

Hàm số xác định với mọi \(x\ne1\). Ta có : \(y'=\frac{-4}{\left(x-1\right)^2}\)

Gọi \(M\left(x_0;y_0\right);\left(x_0\ne1\right)\) là tiếp điểm, suy ra phương trình tiếp tuyến của (C) :

\(\Delta:y=\frac{-4}{\left(x_0-1\right)^2}\left(x-x_0\right)+\frac{2x_0+2}{x_0-1}\)

a) Vì tiếp tuyến có hệ số góc bằng -4 nên ta có :

\(\frac{4}{\left(x_0-1\right)^2}=-16\Leftrightarrow\left[\begin{array}{nghiempt}x_0=\frac{3}{2}\\x_0=\frac{1}{2}\end{array}\right.\)

\(x_0=\frac{3}{2}\Rightarrow y_0=10\Rightarrow\Delta=-16\left(x-\frac{3}{2}\right)+10\) hay \(y=-16x+22\)

\(x_0=\frac{1}{2}\Rightarrow y_0=-6\Rightarrow\Delta=-16\left(x-\frac{1}{2}\right)-6\) hay \(y=-16x+2\)

 
b) Vì tiếp tuyến song song với đường thẳng d : \(y=-4x+1\) nên ta có :
\(y'\left(x_0\right)=-4\Leftrightarrow\frac{-4}{\left(x_0-1\right)^2}=-4\Leftrightarrow x_0=0;x_0=2\)
\(x_0=0\Rightarrow y_0=2\Rightarrow\Delta:y=-4x+2\)
\(x_0=2\Rightarrow y_0=6\Rightarrow\Delta:y=-4x+14\)
 
c) Vì tiếp tuyến tạo với 2 trục tọa độ 1 tam giác vuông cân nên tiếp tuyến phải vuông góc với một trong hai đường phân giác \(y=\pm x\), do đó hệ số góc của tiếp tuyến bằng \(\pm1\) hay \(y'\left(x_0\right)=\pm1\) mà \(y'>0\), mọi \(x\ne1\) nên ta có :
\(y'\left(x_0\right)=-1\Leftrightarrow\frac{-4}{\left(x_0-1\right)^2}=-1\Leftrightarrow x_0=-1;x_0=3\)
\(x_0=-1\Rightarrow y_0=0\Rightarrow\Delta:y=-x-1\)
\(x_0=3\Rightarrow y_0=4\Rightarrow\Delta:y=-x+7\)