K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TT
Thiên Thảo
17 tháng 1 2016
Đúng(0)
Các câu hỏi dưới đây có thể giống với câu hỏi trên
CM
10 tháng 10 2019
Đáp án C
Phương pháp:
Đặt ẩn phụ t = ln x.
Cách giải:
Ta có:
Đặt
Khi đó :
NT
1
4 tháng 4 2016
\(I=\int\limits^{\ln3}_1\left(x^2-2x\right)de^x=\left(x^2-2x\right)e^x|^{\ln3}_1-\int\limits_1^{\ln3}e^xd\left(x^2-2x\right)=3\left(\ln^23-2\ln3\right)+e-2\int\limits^{\ln3}_1\left(x-1\right)e^xdx\)
\(\int\limits^{\ln3}_1\left(x-1\right)e^xdx=k\)
Lại có :
\(k=\int\limits^{\ln3}_1\left(x-1\right)de^x=\left(x-1\right)e^x|^{\ln3}_0-\int\limits^{\ln3}_0e^xd\left(x-1\right)=3\left(\ln3-1\right)-e^x|^{\ln3}_0=3\ln3-6+e\)
Do đó :
\(I=3\left(\ln^23-2\ln3\right)+e-2\left(3\ln3-6+e\right)=3\ln^23-12\ln3+12-e\)