Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số cần tìm là:a;b (a;b thuộc N*)
Theo đề ra ta có:a/b=2/3
=>a/2=b/3
Đặt a/2=b/3=k (k thuộc N*)
=>a=2k;b=3k
=>a^2=4k^2;b^2=9k^2
=>a^2+b^2=4k^2+9k^2=k^2.(4+9)=13k^2=208
=>k^2=16=>k=4 hoặc k=-4
+Nếu k=4=>a=8;b=12
+Nếu k=-4=>a=-8;b=-12
Gọi 2 số cần tìm là x, y, tao đề bài ta có:
\(\frac{x}{y}=0,9=>\frac{x^2}{y^2}=\frac{81}{100}=>\frac{x^2}{81}=\frac{y^2}{100};x^2+y^2=72.4\)
Áp dụng tính chất dãy tỉ số = nhau, ta có:
\(\frac{x^2}{81}=\frac{y^2}{100}=\frac{x^2+y^2}{81+100}=\frac{72.4}{181}=\frac{2}{5}\)
=> \(\frac{x^2}{81}=\frac{2}{5}=>x^2=\frac{162}{5}=>x=\frac{9\sqrt{10}}{5}\)(Do x là số nguyên dương => \(x\ne-\frac{9\sqrt{10}}{5}\))
=> làm tương tự vậy thì đc : y = \(2\sqrt{10}\)
Vậy...
Gọi 2 số nguyên dương là a;b ta có:\(\frac{a}{b}=\frac{9}{10}\Rightarrow\frac{a}{9}=\frac{b}{10}\)và \(a^2+b^2=724\)
Đặt\(\frac{a}{9}=\frac{b}{10}=k\Rightarrow\left(\frac{a}{9}\right)^2=\left(\frac{b}{10}\right)^2=k^2\Rightarrow\frac{a^2}{81}=\frac{b^2}{100}=k^2\)
Áp dụng tính chất tỉ lệ thức ta có:\(\frac{a^2}{81}=\frac{b^2}{100}=\frac{a^2+b^2}{81+100}=\frac{724}{181}=4=k^2\)
\(\Rightarrow k\in\left\{2;-2\right\}\)
Khi k = 2 => \(\frac{a}{9}=2\Rightarrow a=18;\frac{b}{10}=2\Rightarrow b=20\)
Khi k = -2 =>\(\frac{a}{9}=-2\Rightarrow a=-18;\frac{b}{10}=-2\Rightarrow b=-20\)
Vậy\(\left(a;b\right)=\left\{\left(18;20\right);\left(-18;-20\right)\right\}\)
Gọi 2 số đó là a và b.
\(\frac{a}{b}=\frac{5}{7}\) ( từ đó suy ra a ; b cùng dấu )
\(\Rightarrow\frac{a}{5}=\frac{b}{7}\)
\(\Rightarrow\frac{a^2}{25}=\frac{b^2}{49}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a^2}{25}=\frac{b^2}{49}=\frac{a^2+b^2}{25+49}=\frac{4736}{74}=64\)
\(\frac{a^2}{25}=64\Rightarrow a^2=1600\Rightarrow a\in\left\{40;-40\right\}\)
\(\frac{b^2}{49}=64\Rightarrow b^2=3136\Rightarrow b\in\left\{56;-56\right\}\)
Mà a ; b cùng dấu nên :
\(\left(a;b\right)\in\left\{\left(40;56\right);\left(-40;-56\right)\right\}\)
Gọi 2 số cần tìm là a; b
Ta có \(\frac{a}{b}=\frac{5}{7}\Rightarrow\frac{a}{5}=\frac{b}{7}\Rightarrow\frac{a^2}{25}=\frac{b^2}{49}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a^2}{25}=\frac{b^2}{49}\Rightarrow\frac{a^2+b^2}{25+49}=\frac{4736}{74}=64\)
Suy ra
\(\frac{a^2}{25}=64\) \(\Rightarrow\) a2 = 64.25 = 1600 \(\Rightarrow\) a = 40 hoặc a = - 40
\(\frac{b^2}{49}=64\) \(\Rightarrow\) b2 = 64.49 = 3136 \(\Rightarrow\) b = 56 hoặc b = - 56
Gọi hai số cần tìm là a,b
Theo đề ta có:
a/b=5/7 <=> 7a=5b <=> b= (7/5)a
cũng theo đề
\(a^2+b^2=4736\)
\(=>a^2+\left(\frac{7}{5}.a\right)^2=4736\)
\(74a^2=118400\)
\(a^2=1600\)
\(a=40\)
b=(7*40)/5=56
đáp số : 40 và 56
bài 2: giải gọi 2 số đó là a, b
a=5k
b=7k
\(\frac{5k.5k}{7k.7k}=\frac{25.k^2}{49.k^2}=\frac{25}{49}\)
bình phương của a=4736:(25+49).25=1600=\(40^2\)
=>a=40
và b=40:5.7=56
Vậy hai số cần tìm là 40 và 56
Gọi 2 số cần tìm lần lượt là a,b(a,b>0;a<b)
Ta có:\(\frac{a}{b}\)=\(\frac{5}{7}\) và \(a^2\)+\(b^2\)4736
Ta có:\(\frac{a}{b}\)=\(\frac{5}{7}\)\(\Rightarrow\)\(\frac{a}{5}\)=\(\frac{b}{7}\)\(\Rightarrow\)\(\left(\frac{a}{5}\right)^2\)=\(\left(\frac{b}{7}\right)^2\)\(\Rightarrow\)\(\frac{a^2}{25}\)=\(\frac{b^2}{49}\)
Ta có:\(\frac{a^2}{25}\)=\(\frac{b^2}{49}\)=\(\frac{a^2+b^2}{25+49}\)=\(\frac{4736}{74}\)=64
\(\Rightarrow\)\(a^2\)=64*25=1600
a=40
\(\Rightarrow\)\(b^2\)=64*49=3136
b=56
Vậy 2 số cần tìm là 40 và 56
x2 + y2 = 4736
x/y = 5/7 => x/ 5 = y/7 => x2/25 = y2/ 49
k2 = 4736/(25+49) = 64
k = 8
x = 8.5 = 40
y = 8.7 = 56