K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)

Lấy 7S trừ S ta có : 

7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)

6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)

7 tháng 2 2017

\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+\frac{1}{4}\left(1+2+3+4\right)+...+\frac{1}{16}\left(1+2+3+...+16\right)\)

\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+...+\frac{1}{16}.\frac{16.17}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+...+\frac{17}{2}\)

\(=\frac{\frac{17.18}{2}-1}{2}=76\)

2 tháng 3 2016

a/ 2H=2^2011-2^2010-2^2009-...-2

=> 2H-H=2^2011-2^2010-2^2009-...-2-(2^2010-2^2009-2^2008-...-1)

H=2^2011-2^2010-2^2009-...-2-2^2010+2^2009+2^2008+...+1

H=2^2011-2^2010-2^2010-1

H=2^2011-2.2^2010-1

H=2^2011-2^2011-1

H=-1 => 2010^-1=1/2010

b/ M=1 + 1/2(1+2) + 1/3(1+2+3) + 1/4(1+2+3+4) + ... + 1/16(1+2+3+...+16)

M= 1+1/2.(2.3/2) + 1/3.(3.4/2) + 1/4.(4.5/2) + ... + 1/16.(16.17/2)

M= 1 + 3/2 +4/2 + 5/2 + ... + 17/2

Cùng mẫu số rồi Tự tính nhé

có 1 công thức làm bài này nè em : 1+2=3=2.3/2, 1+2+3=6=3.4/2, 1+2+3+4=10=4.5/2 ....

26 tháng 3 2022

các bn giúp mk vs 

13 tháng 3 2017

\(M=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)...+\dfrac{1}{16}\left(1+...+16\right)\)

\(=1+\dfrac{1}{2}\cdot\dfrac{2\cdot3}{2}+\dfrac{1}{3}\cdot\dfrac{3\cdot4}{2}+...+\dfrac{1}{16}\cdot\dfrac{16\cdot17}{2}\)

\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+\dfrac{5}{2}+...+\dfrac{16}{2}+\dfrac{17}{2}\)

\(=\dfrac{1}{2}\left(2+3+4+5+...+17\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{\left(17+2\right)\cdot16}{2}=76\)